論文の概要: On Mitigating the Utility-Loss in Differentially Private Learning: A new
Perspective by a Geometrically Inspired Kernel Approach
- arxiv url: http://arxiv.org/abs/2304.01300v4
- Date: Wed, 7 Feb 2024 12:20:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 20:46:51.595044
- Title: On Mitigating the Utility-Loss in Differentially Private Learning: A new
Perspective by a Geometrically Inspired Kernel Approach
- Title(参考訳): 個人差分学習におけるユーティリティ損失の軽減について:幾何学的カーネルアプローチによる新しい視点
- Authors: Mohit Kumar, Bernhard A. Moser, Lukas Fischer
- Abstract要約: 本稿では、分類における精度-損失問題を緩和するために、幾何学的にインスパイアされたカーネルベースのアプローチを提案する。
与えられたデータ点のアフィン殻の表現は、再生ケルネルヒルベルト空間(RKHS)で学習される
このアプローチの有効性は、MNISTデータセット、フライブルク食料品データセット、本物のバイオメディカルデータセットの実験を通じて実証される。
- 参考スコア(独自算出の注目度): 2.4253452809863116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Privacy-utility tradeoff remains as one of the fundamental issues of
differentially private machine learning. This paper introduces a geometrically
inspired kernel-based approach to mitigate the accuracy-loss issue in
classification. In this approach, a representation of the affine hull of given
data points is learned in Reproducing Kernel Hilbert Spaces (RKHS). This leads
to a novel distance measure that hides privacy-sensitive information about
individual data points and improves the privacy-utility tradeoff via
significantly reducing the risk of membership inference attacks. The
effectiveness of the approach is demonstrated through experiments on MNIST
dataset, Freiburg groceries dataset, and a real biomedical dataset. It is
verified that the approach remains computationally practical. The application
of the approach to federated learning is considered and it is observed that the
accuracy-loss due to data being distributed is either marginal or not
significantly high.
- Abstract(参考訳): プライバシとユーティリティのトレードオフは、差分プライベート機械学習の基本的な問題のひとつとして残っている。
本稿では,幾何学的インスパイアされたカーネルに基づく分類の精度低下を緩和する手法を提案する。
このアプローチでは、与えられたデータポイントのアフィン殻の表現が、Reproduction Kernel Hilbert Spaces (RKHS) で学習される。
これにより、個々のデータポイントに関するプライバシーに敏感な情報を隠蔽し、メンバシップ推論攻撃のリスクを大幅に低減することで、プライバシとユーティリティのトレードオフを改善する新しい距離尺度が導かれる。
このアプローチの有効性は、MNISTデータセット、フライブルク食料品データセット、本物のバイオメディカルデータセットの実験を通じて実証される。
このアプローチが計算上実用的であることは確認されている。
フェデレーション学習へのアプローチの適用を考察し,分散データによる精度損失は限界値か,あるいはそれほど高くないことが観察された。
関連論文リスト
- Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
我々は、最悪の近傍データセット上でのモデル分布間のKLばらつきのプライバシー境界を証明した。
このKLプライバシー境界は、トレーニング中にモデルパラメータに対して期待される2乗勾配ノルムによって決定される。
論文 参考訳(メタデータ) (2023-10-31T16:13:22Z) - Locally Differentially Private Gradient Tracking for Distributed Online
Learning over Directed Graphs [2.1271873498506038]
本稿では,局所的に個人差分な勾配追跡に基づく分散オンライン学習アルゴリズムを提案する。
提案アルゴリズムは,厳密な局所差分プライバシーを確保しつつ,平均二乗を最適解に収束させることを証明した。
論文 参考訳(メタデータ) (2023-10-24T18:15:25Z) - Locally Differentially Private Distributed Online Learning with Guaranteed Optimality [1.800614371653704]
本稿では,分散オンライン学習における差分プライバシーと学習精度を両立させる手法を提案する。
予想される即時後悔の減少を確実にする一方で、このアプローチは有限累積プライバシー予算を同時に確保することができる。
私たちの知る限りでは、このアルゴリズムは厳密な局所的な差分プライバシーと学習精度の両方を確実にする最初のアルゴリズムです。
論文 参考訳(メタデータ) (2023-06-25T02:05:34Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
現代の機械学習アルゴリズムは、データからきめ細かい情報を抽出して正確な予測を提供することを目的としており、プライバシー保護の目標と矛盾することが多い。
本稿では、プライバシを保ちながら優れたパフォーマンスを確保するために、プライバシを保存する機械学習アルゴリズムを開発することの実践的および理論的重要性について論じる。
論文 参考訳(メタデータ) (2022-09-09T08:54:13Z) - Gromov-Wasserstein Discrepancy with Local Differential Privacy for
Distributed Structural Graphs [7.4398547397969494]
本稿では,グラフニューラルネットワークから学習したノード埋め込みのGW差分を分析するためのプライバシー保護フレームワークを提案する。
我々の実験は,$varilon$-LDPアルゴリズムによって保証される強力なプライバシー保護により,提案フレームワークがグラフ学習におけるプライバシを保存するだけでなく,GW距離下でのノイズ構造指標も提示することを示した。
論文 参考訳(メタデータ) (2022-02-01T23:32:33Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
ラベルは機密性があり、保護されるべきであるとするマルチクラス分類について検討する。
本稿では,ラベル差分プライバシを用いたディープニューラルネットワークのトレーニングアルゴリズムを提案し,いくつかのデータセットで評価を行う。
論文 参考訳(メタデータ) (2021-02-11T15:09:06Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。