Knowledge Graphs in Practice: Characterizing their Users, Challenges, and Visualization Opportunities
- URL: http://arxiv.org/abs/2304.01311v4
- Date: Tue, 18 Jun 2024 16:47:40 GMT
- Title: Knowledge Graphs in Practice: Characterizing their Users, Challenges, and Visualization Opportunities
- Authors: Harry Li, Gabriel Appleby, Camelia Daniela Brumar, Remco Chang, Ashley Suh,
- Abstract summary: This study presents insights from interviews with nineteen Knowledge Graph (KG) practitioners.
We identify critical challenges experienced by KG practitioners when creating, exploring, and analyzing KGs.
- Score: 5.091409162938817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents insights from interviews with nineteen Knowledge Graph (KG) practitioners who work in both enterprise and academic settings on a wide variety of use cases. Through this study, we identify critical challenges experienced by KG practitioners when creating, exploring, and analyzing KGs that could be alleviated through visualization design. Our findings reveal three major personas among KG practitioners - KG Builders, Analysts, and Consumers - each of whom have their own distinct expertise and needs. We discover that KG Builders would benefit from schema enforcers, while KG Analysts need customizable query builders that provide interim query results. For KG Consumers, we identify a lack of efficacy for node-link diagrams, and the need for tailored domain-specific visualizations to promote KG adoption and comprehension. Lastly, we find that implementing KGs effectively in practice requires both technical and social solutions that are not addressed with current tools, technologies, and collaborative workflows. From the analysis of our interviews, we distill several visualization research directions to improve KG usability, including knowledge cards that balance digestibility and discoverability, timeline views to track temporal changes, interfaces that support organic discovery, and semantic explanations for AI and machine learning predictions.
Related papers
- Context Graph [8.02985792541121]
We present a context graph reasoning textbfCGR$3$ paradigm that leverages large language models (LLMs) to retrieve candidate entities and related contexts.
Our experimental results demonstrate that CGR$3$ significantly improves performance on KG completion (KGC) and KG question answering (KGQA) tasks.
arXiv Detail & Related papers (2024-06-17T02:59:19Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey [61.8716670402084]
This survey focuses on KG-aware research in two principal aspects: KG-driven Multi-Modal (KG4MM) learning, and Multi-Modal Knowledge Graph (MM4KG)
Our review includes two primary task categories: KG-aware multi-modal learning tasks, and intrinsic MMKG tasks.
For most of these tasks, we provide definitions, evaluation benchmarks, and additionally outline essential insights for conducting relevant research.
arXiv Detail & Related papers (2024-02-08T04:04:36Z) - KG-GPT: A General Framework for Reasoning on Knowledge Graphs Using
Large Language Models [18.20425100517317]
We propose KG-GPT, a framework leveraging large language models for tasks employing knowledge graphs.
KG-GPT comprises three steps: Sentence, Graph Retrieval, and Inference, each aimed at partitioning sentences, retrieving relevant graph components, and deriving logical conclusions.
We evaluate KG-GPT using KG-based fact verification and KGQA benchmarks, with the model showing competitive and robust performance, even outperforming several fully-supervised models.
arXiv Detail & Related papers (2023-10-17T12:51:35Z) - LLM-assisted Knowledge Graph Engineering: Experiments with ChatGPT [0.2107969466194361]
ChatGPT can assist us in the development and management of Knowledge Graphs.
Knowledge Graph Engineering (KGE) requires in-depth experiences of graph structures, web technologies, existing models and vocabularies, rule sets, logic, as well as best practices.
arXiv Detail & Related papers (2023-07-13T17:31:41Z) - Reasoning over Multi-view Knowledge Graphs [59.99051368907095]
ROMA is a novel framework for answering logical queries over multi-view KGs.
It scales up to KGs of large sizes (e.g., millions of facts) and fine-granular views.
It generalizes to query structures and KG views that are unobserved during training.
arXiv Detail & Related papers (2022-09-27T21:32:20Z) - BertNet: Harvesting Knowledge Graphs with Arbitrary Relations from
Pretrained Language Models [65.51390418485207]
We propose a new approach of harvesting massive KGs of arbitrary relations from pretrained LMs.
With minimal input of a relation definition, the approach efficiently searches in the vast entity pair space to extract diverse accurate knowledge.
We deploy the approach to harvest KGs of over 400 new relations from different LMs.
arXiv Detail & Related papers (2022-06-28T19:46:29Z) - Meta-Learning Based Knowledge Extrapolation for Knowledge Graphs in the
Federated Setting [43.85991094675398]
We study the knowledge extrapolation problem to embed new components (i.e., entities and relations) that come with emerging knowledge graphs (KGs) in the federated setting.
In this problem, a model trained on an existing KG needs to embed an emerging KG with unseen entities and relations.
We introduce the meta-learning setting, where a set of tasks are sampled on the existing KG to mimic the link prediction task on the emerging KG.
Based on sampled tasks, we meta-train a graph neural network framework that can construct features for unseen components based on structural information and output embeddings for them.
arXiv Detail & Related papers (2022-05-10T06:27:32Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization
and Completion [99.47414073164656]
A comprehensive knowledge graph (KG) contains an instance-level entity graph and an ontology-level concept graph.
The two-view KG provides a testbed for models to "simulate" human's abilities on knowledge abstraction, concretization, and completion.
We propose a unified KG benchmark by improving existing benchmarks in terms of dataset scale, task coverage, and difficulty.
arXiv Detail & Related papers (2020-04-28T16:21:57Z) - Knowledge Graphs and Knowledge Networks: The Story in Brief [0.1933681537640272]
Knowledge Graphs (KGs) represent real-world noisy raw information in a structured form, capturing relationships between entities.
For dynamic real-world applications such as social networks, recommender systems, computational biology, relational knowledge representation has emerged as a challenging research problem.
This article attempts to summarize the journey of KG for AI.
arXiv Detail & Related papers (2020-03-07T18:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.