Context Graph
- URL: http://arxiv.org/abs/2406.11160v3
- Date: Fri, 28 Jun 2024 03:20:22 GMT
- Title: Context Graph
- Authors: Chengjin Xu, Muzhi Li, Cehao Yang, Xuhui Jiang, Lumingyuan Tang, Yiyan Qi, Jian Guo,
- Abstract summary: We present a context graph reasoning textbfCGR$3$ paradigm that leverages large language models (LLMs) to retrieve candidate entities and related contexts.
Our experimental results demonstrate that CGR$3$ significantly improves performance on KG completion (KGC) and KG question answering (KGQA) tasks.
- Score: 8.02985792541121
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Knowledge Graphs (KGs) are foundational structures in many AI applications, representing entities and their interrelations through triples. However, triple-based KGs lack the contextual information of relational knowledge, like temporal dynamics and provenance details, which are crucial for comprehensive knowledge representation and effective reasoning. Instead, \textbf{Context Graphs} (CGs) expand upon the conventional structure by incorporating additional information such as time validity, geographic location, and source provenance. This integration provides a more nuanced and accurate understanding of knowledge, enabling KGs to offer richer insights and support more sophisticated reasoning processes. In this work, we first discuss the inherent limitations of triple-based KGs and introduce the concept of CGs, highlighting their advantages in knowledge representation and reasoning. We then present a context graph reasoning \textbf{CGR$^3$} paradigm that leverages large language models (LLMs) to retrieve candidate entities and related contexts, rank them based on the retrieved information, and reason whether sufficient information has been obtained to answer a query. Our experimental results demonstrate that CGR$^3$ significantly improves performance on KG completion (KGC) and KG question answering (KGQA) tasks, validating the effectiveness of incorporating contextual information on KG representation and reasoning.
Related papers
- Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
Large language models (LLMs) struggle with faithful reasoning due to knowledge gaps and hallucinations.
We introduce graph-constrained reasoning (GCR), a novel framework that bridges structured knowledge in KGs with unstructured reasoning in LLMs.
GCR achieves state-of-the-art performance and exhibits strong zero-shot generalizability to unseen KGs without additional training.
arXiv Detail & Related papers (2024-10-16T22:55:17Z) - A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
We propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability.
To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer.
Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively.
arXiv Detail & Related papers (2024-10-16T06:47:18Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - KG-GPT: A General Framework for Reasoning on Knowledge Graphs Using
Large Language Models [18.20425100517317]
We propose KG-GPT, a framework leveraging large language models for tasks employing knowledge graphs.
KG-GPT comprises three steps: Sentence, Graph Retrieval, and Inference, each aimed at partitioning sentences, retrieving relevant graph components, and deriving logical conclusions.
We evaluate KG-GPT using KG-based fact verification and KGQA benchmarks, with the model showing competitive and robust performance, even outperforming several fully-supervised models.
arXiv Detail & Related papers (2023-10-17T12:51:35Z) - Reasoning over Multi-view Knowledge Graphs [59.99051368907095]
ROMA is a novel framework for answering logical queries over multi-view KGs.
It scales up to KGs of large sizes (e.g., millions of facts) and fine-granular views.
It generalizes to query structures and KG views that are unobserved during training.
arXiv Detail & Related papers (2022-09-27T21:32:20Z) - Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus [59.20235923987045]
It is challenging to enrich a Knowledge Graph with newly harvested triples while maintaining the quality of the knowledge representation.
This paper proposes a system to refine a KG using information harvested from an additional corpus.
arXiv Detail & Related papers (2022-06-15T12:16:10Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer [43.453915033312114]
Predicting missing facts in a knowledge graph (KG) is a crucial task in knowledge base construction and reasoning.
We propose KEnS, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs.
Experiments on five real-world language-specific KGs show that KEnS consistently improves state-of-the-art methods on KG completion.
arXiv Detail & Related papers (2020-10-07T04:54:03Z) - Relational Learning Analysis of Social Politics using Knowledge Graph
Embedding [11.978556412301975]
This paper presents a novel credibility domain-based KG Embedding framework.
It involves capturing a fusion of data obtained from heterogeneous resources into a formal KG representation depicted by a domain.
The framework also embodies a credibility module to ensure data quality and trustworthiness.
arXiv Detail & Related papers (2020-06-02T14:10:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.