論文の概要: IterativePFN: True Iterative Point Cloud Filtering
- arxiv url: http://arxiv.org/abs/2304.01529v1
- Date: Tue, 4 Apr 2023 04:47:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 15:13:21.825511
- Title: IterativePFN: True Iterative Point Cloud Filtering
- Title(参考訳): iterativepfn: 真の反復的ポイントクラウドフィルタリング
- Authors: Dasith de Silva Edirimuni, Xuequan Lu, Zhiwen Shao, Gang Li, Antonio
Robles-Kelly and Ying He
- Abstract要約: 基本的な3Dビジョンタスクは、ポイントクラウドフィルタリング(point cloud filtering)またはデノイング(denoising)として知られるノイズの除去である。
本報告では,本フィルタを内部でモデル化する複数のイテレーションで構成されたIterativePFN(Iterative Cloud Filtering Network)を提案する。
我々の手法は最先端の手法よりも優れた性能が得られる。
- 参考スコア(独自算出の注目度): 18.51768749680731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quality of point clouds is often limited by noise introduced during their
capture process. Consequently, a fundamental 3D vision task is the removal of
noise, known as point cloud filtering or denoising. State-of-the-art learning
based methods focus on training neural networks to infer filtered displacements
and directly shift noisy points onto the underlying clean surfaces. In high
noise conditions, they iterate the filtering process. However, this iterative
filtering is only done at test time and is less effective at ensuring points
converge quickly onto the clean surfaces. We propose IterativePFN (iterative
point cloud filtering network), which consists of multiple IterationModules
that model the true iterative filtering process internally, within a single
network. We train our IterativePFN network using a novel loss function that
utilizes an adaptive ground truth target at each iteration to capture the
relationship between intermediate filtering results during training. This
ensures that the filtered results converge faster to the clean surfaces. Our
method is able to obtain better performance compared to state-of-the-art
methods. The source code can be found at:
https://github.com/ddsediri/IterativePFN.
- Abstract(参考訳): 点雲の品質は、捕獲プロセス中に生じるノイズによってしばしば制限される。
その結果、基本的な3Dビジョンタスクはノイズの除去であり、ポイントクラウドフィルタリング(point cloud filtering)またはデノイング(denoising)と呼ばれる。
最先端の学習に基づく手法は、ニューラルネットワークを訓練し、フィルタされた変位を推測し、ノイズ点を基礎となるクリーンサーフェスに直接シフトさせる。
高い雑音条件下では、フィルタリング処理を繰り返す。
しかし、この反復フィルタリングはテスト時にのみ行われ、清潔な表面に点が早く収束することを確実にする効果が低い。
一つのネットワーク内において、真の反復フィルタリングプロセスを内部でモデル化する複数のイテレーションモジュールからなるIterativePFN(iterative point cloud filtering network)を提案する。
学習中の中間フィルタリング結果の関係を捉えるために,適応的基底的真理目標を用いた新しい損失関数を用いて反復的pfnネットワークを訓練する。
これにより、フィルタされた結果はより早くクリーンな表面に収束する。
我々の手法は最先端の手法よりも優れた性能が得られる。
ソースコードはhttps://github.com/ddsediri/iterativepfn。
関連論文リスト
- StraightPCF: Straight Point Cloud Filtering [50.66412286723848]
ポイントクラウドフィルタリングは、基礎となるクリーンな表面を回復しながらノイズを取り除くことを目的とした、基本的な3Dビジョンタスクである。
我々は、ポイントクラウドフィルタリングのための新しいディープラーニングベースの方法であるStraightPCFを紹介する。
ノイズの多い点を直線に沿って移動させることで、離散化誤差を低減し、クリーン表面への高速な収束を保証する。
論文 参考訳(メタデータ) (2024-05-14T05:41:59Z) - Efficient CNNs via Passive Filter Pruning [23.661189257759535]
畳み込みニューラルネットワーク(CNN)は、様々なアプリケーションで最先端のパフォーマンスを示している。
CNNは、高い計算複雑性とメモリストレージを必要とするため、リソース不足である。
CNNにおける計算効率向上に向けた最近の取り組みには、フィルタプルーニング法がある。
論文 参考訳(メタデータ) (2023-04-05T09:19:19Z) - Contrastive Learning for Joint Normal Estimation and Point Cloud
Filtering [12.602645108896636]
本研究では,正規点とフィルタ点の雲を共同で推定する新しいディープラーニング手法を提案する。
まず,3Dパッチに基づくコントラスト学習フレームワークを導入する。
実験の結果,本手法は2つのタスクを同時にサポートし,シャープな特徴と細部を保存できることがわかった。
論文 参考訳(メタデータ) (2022-08-14T09:16:25Z) - Batch Normalization Tells You Which Filter is Important [49.903610684578716]
我々は,事前学習したCNNのBNパラメータに基づいて,各フィルタの重要性を評価することによって,簡易かつ効果的なフィルタ刈取法を提案する。
CIFAR-10とImageNetの実験結果から,提案手法が優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-12-02T12:04:59Z) - Unsharp Mask Guided Filtering [53.14430987860308]
本論文の目的は,フィルタ中の構造伝達の重要性を強調した画像フィルタリングである。
アンシャープマスキングにインスパイアされたガイドフィルタの新しい簡易な定式化を提案する。
我々の定式化は低域フィルタに先立ってフィルタを楽しみ、単一の係数を推定することで明示的な構造伝達を可能にする。
論文 参考訳(メタデータ) (2021-06-02T19:15:34Z) - Training Interpretable Convolutional Neural Networks by Differentiating
Class-specific Filters [64.46270549587004]
畳み込みニューラルネットワーク(CNN)は、様々なタスクでうまく使われている。
CNNは、しばしば「ブラックボックス」と解釈可能性の欠如とみなされる。
本稿では,クラス固有のフィルタを奨励することで,解釈可能なCNNを訓練する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-16T09:12:26Z) - Filter Grafting for Deep Neural Networks: Reason, Method, and
Cultivation [86.91324735966766]
フィルタは現代の畳み込みニューラルネットワーク(CNN)のキーコンポーネントである
本稿では,この目的を達成するためにフィルタグラフト(textbfMethod)を導入する。
我々は,フィルタの情報を測定するための新しい基準と,グラフトされた情報をネットワーク間でバランスをとるための適応重み付け戦略を開発する。
論文 参考訳(メタデータ) (2020-04-26T08:36:26Z) - Convolutional Neural Network Pruning Using Filter Attenuation [10.282782377635106]
畳み込みニューラルネットワーク(CNN)におけるフィルタは必須要素である
フィルタプルーニング法では、チャネルや接続を含む全てのコンポーネントを持つフィルタが除去される。
弱いフィルタを直接除去しないフィルタ減衰に基づくCNNプルーニング手法を提案する。
論文 参考訳(メタデータ) (2020-02-09T06:31:24Z) - Filter Grafting for Deep Neural Networks [71.39169475500324]
ディープニューラルネットワーク(DNN)の表現能力向上を目的としたフィルタグラフト
我々は,フィルタの情報を測定するエントロピーベースの基準と,ネットワーク間のグラフト情報のバランスをとるための適応重み付け戦略を開発する。
例えば、グラフトされたMobileNetV2は、CIFAR-100データセットで非グラフトされたMobileNetV2を約7%上回っている。
論文 参考訳(メタデータ) (2020-01-15T03:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。