Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
from Pre-trained Models
- URL: http://arxiv.org/abs/2312.15297v1
- Date: Sat, 23 Dec 2023 16:39:24 GMT
- Title: Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
from Pre-trained Models
- Authors: Gianni Franchi, Olivier Laurent, Maxence Legu\'ery, Andrei Bursuc,
Andrea Pilzer and Angela Yao
- Abstract summary: Deep Neural Networks (DNNs) are powerful tools for various computer vision tasks, yet they often struggle with reliable uncertainty quantification.
We introduce the Adaptable Bayesian Neural Network (ABNN), a simple and scalable strategy to seamlessly transform DNNs into BNNs.
We conduct extensive experiments across multiple datasets for image classification and semantic segmentation tasks, and our results demonstrate that ABNN achieves state-of-the-art performance.
- Score: 40.38541033389344
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep Neural Networks (DNNs) are powerful tools for various computer vision
tasks, yet they often struggle with reliable uncertainty quantification - a
critical requirement for real-world applications. Bayesian Neural Networks
(BNN) are equipped for uncertainty estimation but cannot scale to large DNNs
that are highly unstable to train. To address this challenge, we introduce the
Adaptable Bayesian Neural Network (ABNN), a simple and scalable strategy to
seamlessly transform DNNs into BNNs in a post-hoc manner with minimal
computational and training overheads. ABNN preserves the main predictive
properties of DNNs while enhancing their uncertainty quantification abilities
through simple BNN adaptation layers (attached to normalization layers) and a
few fine-tuning steps on pre-trained models. We conduct extensive experiments
across multiple datasets for image classification and semantic segmentation
tasks, and our results demonstrate that ABNN achieves state-of-the-art
performance without the computational budget typically associated with ensemble
methods.
Related papers
- Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars [4.184276171116354]
Spiking Neural Networks (SNNs) have emerged as the low-power alternative to Artificial Neural Networks (ANNs)
We study the effect of crossbar non-idealities and intrinsicity on the performance of SNNs.
arXiv Detail & Related papers (2022-06-20T07:07:41Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Rethinking Pretraining as a Bridge from ANNs to SNNs [13.984523794353477]
Spiking neural networks (SNNs) are known as a typical kind of brain-inspired models with their unique features.
How to obtain a high-accuracy model has always been the main challenge in the field of SNN.
arXiv Detail & Related papers (2022-03-02T14:59:57Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
We design a spatial-temporal-fusion BNN for efficiently scaling BNNs to large models.
Compared to vanilla BNNs, our approach can greatly reduce the training time and the number of parameters, which contributes to scale BNNs efficiently.
arXiv Detail & Related papers (2021-12-12T17:13:14Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.