論文の概要: Measure theoretic results for approximation by neural networks with
limited weights
- arxiv url: http://arxiv.org/abs/2304.01880v1
- Date: Tue, 4 Apr 2023 15:34:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 13:20:17.862291
- Title: Measure theoretic results for approximation by neural networks with
limited weights
- Title(参考訳): 限定重み付きニューラルネットワークによる近似の理論的結果の測定
- Authors: Vugar Ismailov and Ekrem Savas
- Abstract要約: 開区間から有限個の方向としきい値で重みが変化する単一層ニューラルネットワークの近似特性について検討した。
連続関数空間におけるそのようなネットワークの密度に関する必要十分かつ十分な測度理論条件を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study approximation properties of single hidden layer
neural networks with weights varying on finitely many directions and thresholds
from an open interval. We obtain a necessary and at the same time sufficient
measure theoretic condition for density of such networks in the space of
continuous functions. Further, we prove a density result for neural networks
with a specifically constructed activation function and a fixed number of
neurons.
- Abstract(参考訳): 本論文では,開区間から有限個の方向としきい値で重みが変化する単一層ニューラルネットワークの近似特性について検討する。
連続関数の空間におけるそのようなネットワークの密度について、必要かつ同時に十分な測度論的条件を求める。
さらに、特定の活性化関数と固定数のニューロンを持つニューラルネットワークに対して、密度結果を示す。
関連論文リスト
- Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Universal Approximation and the Topological Neural Network [0.0]
トポロジカルニューラルネットワーク(TNN)は、通常の有限次元空間の代わりにチコノフ位相空間からデータを取得する。
また、ボレル測度をデータとする分布ニューラルネットワーク(DNN)も導入する。
論文 参考訳(メタデータ) (2023-05-26T05:28:10Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Understanding Weight Similarity of Neural Networks via Chain
Normalization Rule and Hypothesis-Training-Testing [58.401504709365284]
非畳み込みニューラルネットワークの重み類似度を定量化できる重み類似度尺度を提案する。
まず,ニューラルネットワークの重みをチェーン正規化規則により正規化し,重み訓練表現学習を導入する。
ニューラルネットワークの重み類似性に関する仮説を検証するため,従来の仮説検証手法を拡張した。
論文 参考訳(メタデータ) (2022-08-08T19:11:03Z) - Imaging Conductivity from Current Density Magnitude using Neural
Networks [1.8692254863855962]
内部電流密度から導電率を撮像するニューラルネットワークに基づく再構成手法を開発した。
この手法は,データノイズの存在に関して,顕著な堅牢性を持っていることが観察された。
論文 参考訳(メタデータ) (2022-04-05T18:31:03Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
ニューラルネットワークのニューラルカーネル(NTK)に重みのランダムプルーニングが及ぼす影響について検討する。
特に、この研究は、完全に接続されたニューラルネットワークとそのランダムに切断されたバージョン間のNTKの等価性を確立する。
論文 参考訳(メタデータ) (2022-03-27T15:22:19Z) - Approximate Bisimulation Relations for Neural Networks and Application
to Assured Neural Network Compression [3.0839245814393728]
本稿では,フィードフォワードニューラルネットワークに対する近似バイシミュレーション関係の概念を提案する。
2つのニューラルネットワーク間の近似バイシミュレーション誤差を計算するために,新しいニューラルネットワークマージ法を開発した。
論文 参考訳(メタデータ) (2022-02-02T16:21:19Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - The Representation Power of Neural Networks: Breaking the Curse of
Dimensionality [0.0]
浅層および深層ニューラルネットワークの量に対する上限を証明します。
我々はさらに、これらの境界がコロボフ函数を近似するために必要となる連続関数近似器の最小パラメータ数にほぼ一致することを証明した。
論文 参考訳(メタデータ) (2020-12-10T04:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。