論文の概要: Cross-Class Feature Augmentation for Class Incremental Learning
- arxiv url: http://arxiv.org/abs/2304.01899v4
- Date: Mon, 26 Feb 2024 20:19:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 00:42:37.462601
- Title: Cross-Class Feature Augmentation for Class Incremental Learning
- Title(参考訳): クラスインクリメンタル学習のためのクロスクラス機能拡張
- Authors: Taehoon Kim, Jaeyoo Park, Bohyung Han
- Abstract要約: 本稿では,敵対的攻撃を動機とした機能強化手法を取り入れた新しいクラスインクリメンタルラーニング手法を提案する。
提案手法は,任意の対象クラスの特徴を増大させるため,クラスインクリメンタルラーニングにおける従来の知識を活用するためのユニークな視点を持つ。
提案手法は,様々なシナリオにおいて,既存の段階的学習手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 45.91253737682168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel class incremental learning approach by incorporating a
feature augmentation technique motivated by adversarial attacks. We employ a
classifier learned in the past to complement training examples rather than
simply play a role as a teacher for knowledge distillation towards subsequent
models. The proposed approach has a unique perspective to utilize the previous
knowledge in class incremental learning since it augments features of arbitrary
target classes using examples in other classes via adversarial attacks on a
previously learned classifier. By allowing the cross-class feature
augmentations, each class in the old tasks conveniently populates samples in
the feature space, which alleviates the collapse of the decision boundaries
caused by sample deficiency for the previous tasks, especially when the number
of stored exemplars is small. This idea can be easily incorporated into
existing class incremental learning algorithms without any architecture
modification. Extensive experiments on the standard benchmarks show that our
method consistently outperforms existing class incremental learning methods by
significant margins in various scenarios, especially under an environment with
an extremely limited memory budget.
- Abstract(参考訳): 本稿では,敵対的攻撃を動機とした機能強化手法を取り入れた新しいクラスインクリメンタル学習手法を提案する。
我々は,学習した学習例を補完するために,知識蒸留の教師としての役割を担うのではなく,過去に学んだ分類器を用いている。
提案手法は,事前学習した分類器に対する逆攻撃を通じて,他のクラスでの例を用いて任意の対象クラスの特徴を増強するため,クラスインクリメンタルラーニングにおける従来の知識を活用するというユニークな視点を持つ。
クロスクラス機能拡張を許すことにより、古いタスクの各クラスは、特徴空間にサンプルを都合よく投入し、特に格納された例の数が少ない場合には、前タスクのサンプル不足に起因する決定境界の崩壊を緩和する。
このアイデアは、アーキテクチャを変更することなく、既存のクラスインクリメンタル学習アルゴリズムに簡単に組み込むことができる。
各種シナリオにおいて,特にメモリ予算が極めて限られている環境下では,本手法が既存の段階的学習手法よりはるかに優れていることを示す。
関連論文リスト
- Efficient Non-Exemplar Class-Incremental Learning with Retrospective Feature Synthesis [21.348252135252412]
現在のNon-Exemplar Class-Incremental Learning (NECIL)メソッドは、クラス毎に1つのプロトタイプを格納することで、忘れを軽減している。
そこで本研究では,より効率的なNECIL手法を提案する。
提案手法は,非経験的クラスインクリメンタル学習の効率を大幅に向上させ,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-11-03T07:19:11Z) - Class incremental learning with probability dampening and cascaded gated classifier [4.285597067389559]
本稿では, Margin Dampening と Cascaded Scaling という新たな漸進正規化手法を提案する。
1つ目は、ソフト制約と知識蒸留のアプローチを組み合わせて、過去の知識を保存し、新しいパターンを忘れることを可能にします。
提案手法は,複数のベンチマークにおいて,確立されたベースラインで良好に動作することを示す。
論文 参考訳(メタデータ) (2024-02-02T09:33:07Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
既存のメソッドでは、新しいクラスのサンプルをベースクラスに誤分類する傾向があり、新しいクラスのパフォーマンスが低下する。
我々は,新しいクラスの識別性を高めるため,簡易かつ効果的なトレーニング-フレア・カロブラシアン (TEEN) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-08T18:24:08Z) - Non-exemplar Class-incremental Learning by Random Auxiliary Classes
Augmentation and Mixed Features [37.51376572211081]
クラス増分学習(クラス増分学習)とは、古いクラスのサンプルを保存することなく、新しいクラスと古いクラスを分類することである。
本稿では,Random Auxiliary Class Augmentation と Mixed Feature を組み合わせたRAMF と呼ばれる実効非経験的手法を提案する。
論文 参考訳(メタデータ) (2023-04-16T06:33:43Z) - Class-Incremental Learning: A Survey [84.30083092434938]
CIL(Class-Incremental Learning)は、学習者が新しいクラスの知識を段階的に取り入れることを可能にする。
CILは、前者の特徴を壊滅的に忘れる傾向にあり、その性能は劇的に低下する。
ベンチマーク画像分類タスクにおける17の手法の厳密で統一的な評価を行い、異なるアルゴリズムの特徴を明らかにする。
論文 参考訳(メタデータ) (2023-02-07T17:59:05Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
本研究では,新しいクラスに移動可能な分類の表現を基礎モデルで学習する能力について検討する。
クラス-機能-変数の崩壊の場合,新しいクラスで学習した特徴マップのわずかな誤差が小さいことを示す。
論文 参考訳(メタデータ) (2022-12-23T18:46:05Z) - Improving Feature Generalizability with Multitask Learning in Class
Incremental Learning [12.632121107536843]
キーワードスポッティングのような多くのディープラーニングアプリケーションは、クラスインクリメンタルラーニング(CIL)と呼ばれる新しい概念(クラス)を時間とともに組み込む必要がある。
CILの最大の課題は、破滅的な忘れ、すなわち、新しいタスクを学習しながら可能な限り多くの古い知識を保存することである。
本稿では,基本モデルトレーニング中のマルチタスク学習による特徴一般化性の向上を提案する。
提案手法は,平均漸進的学習精度を最大5.5%向上させ,時間とともにより信頼性が高く正確なキーワードスポッティングを可能にする。
論文 参考訳(メタデータ) (2022-04-26T07:47:54Z) - Long-tail Recognition via Compositional Knowledge Transfer [60.03764547406601]
末尾クラスの少数ショット問題に対処する長尾認識のための新しい戦略を導入する。
我々の目標は、情報に富んだ共通クラスから得られた知識を、意味的に類似しているがデータに富む稀なクラスに伝達することである。
実験結果から,本手法は稀なクラスにおいて,堅牢な共通クラス性能を維持しつつ,大幅な性能向上を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-12-13T15:48:59Z) - Open-Set Representation Learning through Combinatorial Embedding [62.05670732352456]
ラベル付きクラスとラベルなしクラスの両方の例に基づく表現学習を通じて、データセットにおける新しい概念を識別することに興味がある。
異種ラベル空間上の複数の教師付きメタクラス分類器によって与えられる構成知識を用いて、自然に未知のクラス内のサンプルをクラスタリングする学習手法を提案する。
提案アルゴリズムは,未確認クラスの識別性の向上と,新しいクラスに一般化可能な既知のクラス表現の学習を併用して,新しい概念を探索する。
論文 参考訳(メタデータ) (2021-06-29T11:51:57Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。