論文の概要: Dialogue-Contextualized Re-ranking for Medical History-Taking
- arxiv url: http://arxiv.org/abs/2304.01974v1
- Date: Tue, 4 Apr 2023 17:31:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 12:52:57.585092
- Title: Dialogue-Contextualized Re-ranking for Medical History-Taking
- Title(参考訳): 対話の文脈化による医療履歴の整理
- Authors: Jian Zhu, Ilya Valmianski, Anitha Kannan
- Abstract要約: 本稿では,第1段階の質問候補を再ランク付けすることで,トレーニングと推論のギャップを埋める2段階の再ランク付け手法を提案する。
専門家システムと比較して,提案するトランスフォーマーバックボーンを用いたグローバルリランカにより,最高の性能が得られることがわかった。
- 参考スコア(独自算出の注目度): 5.039849340960835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI-driven medical history-taking is an important component in symptom
checking, automated patient intake, triage, and other AI virtual care
applications. As history-taking is extremely varied, machine learning models
require a significant amount of data to train. To overcome this challenge,
existing systems are developed using indirect data or expert knowledge. This
leads to a training-inference gap as models are trained on different kinds of
data than what they observe at inference time. In this work, we present a
two-stage re-ranking approach that helps close the training-inference gap by
re-ranking the first-stage question candidates using a dialogue-contextualized
model. For this, we propose a new model, global re-ranker, which cross-encodes
the dialogue with all questions simultaneously, and compare it with several
existing neural baselines. We test both transformer and S4-based language model
backbones. We find that relative to the expert system, the best performance is
achieved by our proposed global re-ranker with a transformer backbone,
resulting in a 30% higher normalized discount cumulative gain (nDCG) and a 77%
higher mean average precision (mAP).
- Abstract(参考訳): AI駆動型医療履歴取得は、症状チェック、自動化された患者摂取、トリアージ、その他のAIバーチャルケアアプリケーションにおいて重要なコンポーネントである。
履歴取得は非常に多様であるため、機械学習モデルはトレーニングに大量のデータを必要とする。
この課題を克服するために、間接データや専門知識を用いて既存のシステムを開発する。
これにより、モデルが推論時に観察するデータとは異なる種類のデータでトレーニングされるため、トレーニングと参照のギャップが生まれる。
本研究では,対話文脈モデルを用いて,第1段階の質問候補を再ランク付けすることで,トレーニングと推論のギャップを埋める2段階の再ランク付け手法を提案する。
そこで本研究では,対話とすべての質問を同時にエンコードし,既存のニューラルベースラインと比較する新しいモデルglobal re-rankerを提案する。
我々はTransformerとS4ベースの言語モデルのバックボーンをテストする。
専門家システムと比較して,提案したトランスフォーマーバックボーンを用いたグローバルリランカにより最高の性能が得られ,正規化割引累積ゲイン(nDCG)が30%高く,平均平均精度(mAP)が77%高い結果が得られた。
関連論文リスト
- Utilizing Machine Learning and 3D Neuroimaging to Predict Hearing Loss: A Comparative Analysis of Dimensionality Reduction and Regression Techniques [0.0]
我々は,脳の灰白質3次元画像における難聴閾値を予測するための機械学習アプローチについて検討した。
第1フェーズでは,3次元CNNモデルを用いて,遅延空間への高次元入力を低減した。
第2フェーズでは、このモデルを使用して、リッチな機能への入力を削減した。
論文 参考訳(メタデータ) (2024-04-30T18:39:41Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
我々は,暗黙のニューラル表現に基づく時系列計算のための新しい自動デコードフレームワークMADSを提案する。
実世界の2つのデータセット上で本モデルを評価し,時系列計算における最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-03T09:08:47Z) - Learning towards Selective Data Augmentation for Dialogue Generation [52.540330534137794]
すべての事例が増補作業に有益である訳ではなく、増補に適した事例は以下の2つの属性に従うべきであると我々は主張する。
応答生成タスクに対してSDA(Selective Data Augmentation framework)を提案する。
論文 参考訳(メタデータ) (2023-03-17T01:26:39Z) - A Model-Agnostic Data Manipulation Method for Persona-based Dialogue
Generation [107.82729587882397]
現在のペルソナベースの対話データセットのスケールアップには費用がかかる。
このタスクの各データサンプルは、従来の対話データよりも複雑である。
本稿では,ペルソナをベースとした対話生成モデルにおいて,モデルに依存しないデータ操作手法を提案する。
論文 参考訳(メタデータ) (2022-04-21T03:49:54Z) - Data-Efficient Methods for Dialogue Systems [4.061135251278187]
会話型ユーザインタフェース(CUI)は、SiriやAlexaといったコンシューマにフォーカスした製品において、日常的に広く普及している。
ディープラーニングは、対話システムにおける最近のブレークスルーの根底にあるが、専門家によって注釈付けされることが多い、非常に大量のトレーニングデータを必要とする。
本稿では,最小限のデータから頑健な対話システムを訓練するための一連の手法を紹介する。
論文 参考訳(メタデータ) (2020-12-05T02:51:09Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - Data augmentation using generative networks to identify dementia [20.137419355252362]
生成モデルはデータ拡張の効果的なアプローチとして利用できることを示す。
本稿では,認知症自動検出システムから抽出した音声と音声の異なる特徴に対する類似したアプローチの適用について検討する。
論文 参考訳(メタデータ) (2020-04-13T15:05:24Z) - The World is Not Binary: Learning to Rank with Grayscale Data for
Dialogue Response Selection [55.390442067381755]
人間の努力なしに、グレースケールのデータを自動的に構築できることが示される。
本手法では,自動グレースケールデータ生成装置として,市販の応答検索モデルと応答生成モデルを用いる。
3つのベンチマークデータセットと4つの最先端マッチングモデルの実験は、提案手法が大幅に、一貫したパフォーマンス改善をもたらすことを示している。
論文 参考訳(メタデータ) (2020-04-06T06:34:54Z) - Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation [77.62366712130196]
マルチドメイン MetaLWOz データセットに微調整した GPT-2 に基づくハイブリッド生成・検索モデル DSTC8 の高速領域適応タスクにおける入賞条件について述べる。
提案モデルでは,MetaLWOz上の解析論理をフォールバックとして使用し,人間の評価におけるSoTA(第2位システムよりも4%向上)と,未知のMultiWOZデータセットに適応した競合一般化性能を実現する。
論文 参考訳(メタデータ) (2020-03-03T18:07:42Z) - An Efficient Method of Training Small Models for Regression Problems
with Knowledge Distillation [1.433758865948252]
回帰問題に対する知識蒸留の新しい定式化を提案する。
まず,教師モデル予測を用いて,教師モデルを用いた学習サンプルの退学率を下げる新たな損失関数,教師の退学率の減少を提案する。
マルチタスクネットワークを考えることで、学生モデルの特徴抽出の訓練がより効果的になる。
論文 参考訳(メタデータ) (2020-02-28T08:46:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。