SM/VIO: Robust Underwater State Estimation Switching Between Model-based
and Visual Inertial Odometry
- URL: http://arxiv.org/abs/2304.01988v1
- Date: Tue, 4 Apr 2023 17:46:20 GMT
- Title: SM/VIO: Robust Underwater State Estimation Switching Between Model-based
and Visual Inertial Odometry
- Authors: Bharat Joshi, Hunter Damron, Sharmin Rahman, Ioannis Rekleitis
- Abstract summary: This paper addresses the robustness problem of visual-inertial state estimation for underwater operations.
The proposed approach utilizes a model of the robot's kinematics together with proprioceptive sensors to maintain the pose estimate.
Health-monitoring tracks the VIO process ensuring timely switches between the two estimators.
- Score: 1.9785872350085876
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper addresses the robustness problem of visual-inertial state
estimation for underwater operations. Underwater robots operating in a
challenging environment are required to know their pose at all times. All
vision-based localization schemes are prone to failure due to poor visibility
conditions, color loss, and lack of features. The proposed approach utilizes a
model of the robot's kinematics together with proprioceptive sensors to
maintain the pose estimate during visual-inertial odometry (VIO) failures.
Furthermore, the trajectories from successful VIO and the ones from the
model-driven odometry are integrated in a coherent set that maintains a
consistent pose at all times. Health-monitoring tracks the VIO process ensuring
timely switches between the two estimators. Finally, loop closure is
implemented on the overall trajectory. The resulting framework is a robust
estimator switching between model-based and visual-inertial odometry (SM/VIO).
Experimental results from numerous deployments of the Aqua2 vehicle demonstrate
the robustness of our approach over coral reefs and a shipwreck.
Related papers
- FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry [52.131996528655094]
We present the Long-term Effective Any Point Tracking (LEAP) module.
LEAP innovatively combines visual, inter-track, and temporal cues with mindfully selected anchors for dynamic track estimation.
Based on these traits, we develop LEAP-VO, a robust visual odometry system adept at handling occlusions and dynamic scenes.
arXiv Detail & Related papers (2024-01-03T18:57:27Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
This paper presents an autonomous vision-based navigation framework for tracking target objects in extreme marine conditions.
The proposed framework has been thoroughly tested in simulation under extremely reduced visibility due to sandstorms and fog.
The results are compared with state-of-the-art de-hazing methods across the benchmarked MBZIRC simulation dataset.
arXiv Detail & Related papers (2023-08-08T14:25:13Z) - AVOIDDS: Aircraft Vision-based Intruder Detection Dataset and Simulator [37.579437595742995]
We introduce AVOIDDS, a realistic object detection benchmark for the vision-based aircraft detect-and-avoid problem.
We provide a labeled dataset consisting of 72,000 photorealistic images of intruder aircraft with various lighting conditions.
We also provide an interface that evaluates trained models on slices of this dataset to identify changes in performance with respect to changing environmental conditions.
arXiv Detail & Related papers (2023-06-19T23:58:07Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - A high-precision self-supervised monocular visual odometry in foggy
weather based on robust cycled generative adversarial networks and multi-task
learning aided depth estimation [0.0]
This paper proposes a high-precision self-supervised monocular VO, which is specifically designed for navigation in foggy weather.
A cycled generative adversarial network is designed to obtain high-quality self-supervised loss via forcing the forward and backward half-cycle to output consistent estimation.
gradient-based loss and perceptual loss are introduced to eliminate the interference of complex photometric change on self-supervised loss in foggy weather.
arXiv Detail & Related papers (2022-03-09T15:41:57Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
We propose a visuo-tactile model for realtime estimation of the liquid inside a deformable container.
We fuse two sensory modalities, i.e., the raw visual inputs from the RGB camera and the tactile cues from our specific tactile sensor.
The robotic system is well controlled and adjusted based on the estimation model in real time.
arXiv Detail & Related papers (2022-02-23T13:38:31Z) - A Framework for 3D Tracking of Frontal Dynamic Objects in Autonomous
Cars [0.0]
In this paper, the YOLOv3 approach is utilized beside an OpenCV tracker to elicit features from an image.
To obtain the lateral and longitudinal distances, a nonlinear SFM model is considered alongside a state-dependent Riccati equation filter.
A switching method in the form of switching estimation error covariance is proposed to enhance the robust performance of the SDRE filter.
arXiv Detail & Related papers (2021-03-24T18:21:29Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSF is a self-supervised framework for the joint reconstruction of 3D scene structure and motion from stereo video.
We show that the proposed model can reliably predict disparity and scene flow in challenging imagery.
It achieves better generalization than the state-of-the-art, and adapts quickly and robustly to unseen domains.
arXiv Detail & Related papers (2020-06-19T17:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.