FakET: Simulating Cryo-Electron Tomograms with Neural Style Transfer
- URL: http://arxiv.org/abs/2304.02011v4
- Date: Wed, 19 Feb 2025 14:34:59 GMT
- Title: FakET: Simulating Cryo-Electron Tomograms with Neural Style Transfer
- Authors: Pavol Harar, Lukas Herrmann, Philipp Grohs, David Haselbach,
- Abstract summary: We introduce FakET, capable of simulating the forward operator of any cryo transmission electron microscope.<n>It can be used to adapt a synthetic training data set according to reference data producing high-quality simulated micrographs or tilt-series.<n>Remarkably, our technique matches the performance, boosts data generation speed 750 times, uses 33 times less memory, and scales well to typical transmission electron microscope detector sizes.
- Score: 4.0998481751764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In cryo-electron microscopy, accurate particle localization and classification are imperative. Recent deep learning solutions, though successful, require extensive training data sets. The protracted generation time of physics-based models, often employed to produce these data sets, limits their broad applicability. We introduce FakET, a method based on Neural Style Transfer, capable of simulating the forward operator of any cryo transmission electron microscope. It can be used to adapt a synthetic training data set according to reference data producing high-quality simulated micrographs or tilt-series. To assess the quality of our generated data, we used it to train a state-of-the-art localization and classification architecture and compared its performance with a counterpart trained on benchmark data. Remarkably, our technique matches the performance, boosts data generation speed 750 times, uses 33 times less memory, and scales well to typical transmission electron microscope detector sizes. It leverages GPU acceleration and parallel processing. The source code is available at https://github.com/paloha/faket.
Related papers
- Private Training & Data Generation by Clustering Embeddings [74.00687214400021]
Differential privacy (DP) provides a robust framework for protecting individual data.<n>We introduce a novel principled method for DP synthetic image embedding generation.<n> Empirically, a simple two-layer neural network trained on synthetically generated embeddings achieves state-of-the-art (SOTA) classification accuracy.
arXiv Detail & Related papers (2025-06-20T00:17:14Z) - The Artificial Scientist -- in-transit Machine Learning of Plasma Simulations [33.024345484180024]
We demonstrate a streaming workflow in which simulation data is streamed directly to a machine-learning (ML) framework.
With the presented workflow, data operations can be performed in common and easy-to-use programming languages.
arXiv Detail & Related papers (2025-01-06T20:58:27Z) - CiTrus: Squeezing Extra Performance out of Low-data Bio-signal Transfer Learning [0.36832029288386137]
Transfer learning for bio-signals has recently become an important technique to improve prediction performance on downstream tasks with small bio-signal datasets.
We propose a new convolution-transformer hybrid model architecture with masked auto-encoding for low-data bio-signal transfer learning.
Our findings indicate that the convolution-only part of our hybrid model can achieve state-of-the-art performance on some low-data downstream tasks.
arXiv Detail & Related papers (2024-12-16T12:15:16Z) - SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
We show that learning based methods can, even based on synthetic data, significantly outperform GCC-PHAT on novel real world data.
We provide our trained model, SONNET, which is runnable in real-time and works on novel data out of the box for many real data applications.
arXiv Detail & Related papers (2024-11-20T10:23:21Z) - EM-GANSim: Real-time and Accurate EM Simulation Using Conditional GANs for 3D Indoor Scenes [55.2480439325792]
We present a novel machine-learning (ML) approach (EM-GANSim) for real-time electromagnetic (EM) propagation.
In practice, it can compute the signal strength in a few milliseconds on any location in 3D indoor environments.
arXiv Detail & Related papers (2024-05-27T17:19:02Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - X-TIME: An in-memory engine for accelerating machine learning on tabular
data with CAMs [19.086291506702413]
Modern tree-based Machine Learning models shine in extracting relevant information from structured data.
In this work, we focus on an overall analog-digital architecture implementing a novel increased precision analog CAM.
Results evaluated in a single chip at 16nm technology show 119x lower latency at 9740x higher throughput compared with a state-of-the-art GPU.
arXiv Detail & Related papers (2023-04-03T18:20:31Z) - Leveraging generative adversarial networks to create realistic scanning
transmission electron microscopy images [2.5954872177280346]
Machine learning could revolutionize materials research through autonomous data collection and processing.
We employ a cycle generative adversarial network (CycleGAN) with a reciprocal space discriminator to augment simulated data with realistic spatial frequency information.
We showcase our approach by training a fully convolutional network (FCN) to identify single atom defects in a 4.5 million atom data set.
arXiv Detail & Related papers (2023-01-18T19:19:27Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Simulation-Based Parallel Training [55.41644538483948]
We present our ongoing work to design a training framework that alleviates those bottlenecks.
It generates data in parallel with the training process.
We present a strategy to mitigate this bias with a memory buffer.
arXiv Detail & Related papers (2022-11-08T09:31:25Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - 3D fluorescence microscopy data synthesis for segmentation and
benchmarking [0.9922927990501083]
Conditional generative adversarial networks can be utilized to generate realistic image data for 3D fluorescence microscopy.
An additional positional conditioning of the cellular structures enables the reconstruction of position-dependent intensity characteristics.
A patch-wise working principle and a subsequent full-size reassemble strategy is used to generate image data of arbitrary size and different organisms.
arXiv Detail & Related papers (2021-07-21T16:08:56Z) - AutoSimulate: (Quickly) Learning Synthetic Data Generation [70.82315853981838]
We propose an efficient alternative for optimal synthetic data generation based on a novel differentiable approximation of the objective.
We demonstrate that the proposed method finds the optimal data distribution faster (up to $50times$), with significantly reduced training data generation (up to $30times$) and better accuracy ($+8.7%$) on real-world test datasets than previous methods.
arXiv Detail & Related papers (2020-08-16T11:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.