Post-training Model Quantization Using GANs for Synthetic Data
Generation
- URL: http://arxiv.org/abs/2305.06052v1
- Date: Wed, 10 May 2023 11:10:09 GMT
- Title: Post-training Model Quantization Using GANs for Synthetic Data
Generation
- Authors: Athanasios Masouris, Mansi Sharma, Adrian Boguszewski, Alexander
Kozlov, Zhuo Wu, Raymond Lo
- Abstract summary: We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
- Score: 57.40733249681334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization is a widely adopted technique for deep neural networks to reduce
the memory and computational resources required. However, when quantized, most
models would need a suitable calibration process to keep their performance
intact, which requires data from the target domain, such as a fraction of the
dataset used in model training and model validation (i.e. calibration dataset).
In this study, we investigate the use of synthetic data as a substitute for
the calibration with real data for the quantization method. We propose a data
generation method based on Generative Adversarial Networks that are trained
prior to the model quantization step. We compare the performance of models
quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN,
with quantization using real data and an alternative data generation method
based on fractal images. Overall, the results of our experiments demonstrate
the potential of leveraging synthetic data for calibration during the
quantization process. In our experiments, the percentage of accuracy
degradation of the selected models was less than 0.6%, with our best
performance achieved on MobileNetV2 (0.05%). The code is available at:
https://github.com/ThanosM97/gsoc2022-openvino
Related papers
- MetaAug: Meta-Data Augmentation for Post-Training Quantization [32.02377559968568]
Post-Training Quantization (PTQ) has received significant attention because it requires only a small set of calibration data to quantize a full-precision model.
We propose a novel meta-learning based approach to enhance the performance of post-training quantization.
arXiv Detail & Related papers (2024-07-20T02:18:51Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
We present a framework for training generative models for density estimation.
We use the score-based diffusion model to generate labeled data.
Once the labeled data are generated, we can train a simple fully connected neural network to learn the generative model in the supervised manner.
arXiv Detail & Related papers (2023-10-22T23:56:19Z) - Addressing Data Scarcity in Optical Matrix Multiplier Modeling Using
Transfer Learning [0.0]
We present and experimentally evaluate using transfer learning to address experimental data scarcity.
Our approach involves pre-training the model using synthetic data generated from a less accurate analytical model.
We achieve 1 dB root-mean-square error on the matrix weights implemented by a 3x3 photonic chip while using only 25% of the available data.
arXiv Detail & Related papers (2023-08-10T07:33:00Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Generative Low-bitwidth Data Free Quantization [44.613912463011545]
We propose Generative Low-bitwidth Data Free Quantization (GDFQ) to remove the data dependence burden.
With the help of generated data, we can quantize a model by learning knowledge from the pre-trained model.
Our method achieves much higher accuracy on 4-bit quantization than the existing data free quantization method.
arXiv Detail & Related papers (2020-03-07T16:38:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.