Detecting Fake Job Postings Using Bidirectional LSTM
- URL: http://arxiv.org/abs/2304.02019v1
- Date: Mon, 3 Apr 2023 20:05:27 GMT
- Title: Detecting Fake Job Postings Using Bidirectional LSTM
- Authors: Aravind Sasidharan Pillai
- Abstract summary: This study employs a Bidirectional Long Short-Term Memory (Bi-LSTM) model to identify fake job advertisements.
The proposed model demonstrates a superior performance, achieving a 0.91 ROC AUC score and a 98.71% accuracy rate.
The findings of this research contribute to the development of robust, automated tools that can help combat the proliferation of fake job postings.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Fake job postings have become prevalent in the online job market, posing
significant challenges to job seekers and employers. Despite the growing need
to address this problem, there is limited research that leverages deep learning
techniques for the detection of fraudulent job advertisements. This study aims
to fill the gap by employing a Bidirectional Long Short-Term Memory (Bi-LSTM)
model to identify fake job advertisements. Our approach considers both numeric
and text features, effectively capturing the underlying patterns and
relationships within the data. The proposed model demonstrates a superior
performance, achieving a 0.91 ROC AUC score and a 98.71% accuracy rate,
indicating its potential for practical applications in the online job market.
The findings of this research contribute to the development of robust,
automated tools that can help combat the proliferation of fake job postings and
improve the overall integrity of the job search process. Moreover, we discuss
challenges, future research directions, and ethical considerations related to
our approach, aiming to inspire further exploration and development of
practical solutions to combat online job fraud.
Related papers
- Cross-Target Stance Detection: A Survey of Techniques, Datasets, and Challenges [7.242609314791262]
Cross-target stance detection is the task of determining the viewpoint expressed in a text towards a given target.
With the increasing need to analyze and mining viewpoints and opinions online, the task has recently seen a significant surge in interest.
This review paper examines the advancements in cross-target stance detection over the last decade.
arXiv Detail & Related papers (2024-09-20T15:49:14Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - Towards Data-Centric Automatic R&D [17.158255487686997]
Researchers often seek the potential research directions by reading and then verifying them through experiments.
The data-driven black-box deep learning method has demonstrated its effectiveness in a wide range of real-world scenarios.
We propose a Real-world Data-centric automatic R&D Benchmark, namely RD2Bench.
arXiv Detail & Related papers (2024-04-17T11:33:21Z) - WESE: Weak Exploration to Strong Exploitation for LLM Agents [95.6720931773781]
This paper proposes a novel approach, Weak Exploration to Strong Exploitation (WESE) to enhance LLM agents in solving open-world interactive tasks.
WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge.
A knowledge graph-based strategy is then introduced to store the acquired knowledge and extract task-relevant knowledge, enhancing the stronger agent in success rate and efficiency for the exploitation task.
arXiv Detail & Related papers (2024-04-11T03:31:54Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - A practical method for occupational skills detection in Vietnamese job
listings [0.16114012813668932]
Lack of accurate and timely labor market information leads to skill miss-matches.
Traditional approaches rely on existing taxonomy and/or large annotated data.
We propose a practical methodology for skill detection in Vietnamese job listings.
arXiv Detail & Related papers (2022-10-26T10:23:18Z) - A Comprehensive Review of Trends, Applications and Challenges In
Out-of-Distribution Detection [0.76146285961466]
Field of study has emerged, focusing on detecting out-of-distribution data subsets and enabling a more comprehensive generalization.
As many deep learning based models have achieved near-perfect results on benchmark datasets, the need to evaluate these models' reliability and trustworthiness is felt more strongly than ever.
This paper presents a survey that, in addition to reviewing more than 70 papers in this field, presents challenges and directions for future works and offers a unifying look into various types of data shifts and solutions for better generalization.
arXiv Detail & Related papers (2022-09-26T18:13:14Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Fair Representation Learning for Heterogeneous Information Networks [35.80367469624887]
We propose a comprehensive set of de-biasing methods for fair HINs representation learning.
We study the behavior of these algorithms, especially their capability in balancing the trade-off between fairness and prediction accuracy.
We evaluate the performance of the proposed methods in an automated career counseling application.
arXiv Detail & Related papers (2021-04-18T08:28:18Z) - Job2Vec: Job Title Benchmarking with Collective Multi-View
Representation Learning [51.34011135329063]
Job Title Benchmarking (JTB) aims at matching job titles with similar expertise levels across various companies.
Traditional JTB approaches mainly rely on manual market surveys, which is expensive and labor-intensive.
We reformulate the JTB as the task of link prediction over the Job-Graph that matched job titles should have links.
arXiv Detail & Related papers (2020-09-16T02:33:32Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
Multi-object tracking (MOT) is an important problem in computer vision.
We present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet.
The approach achieves high accuracy for both detection and tracking.
arXiv Detail & Related papers (2020-04-04T08:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.