ORMind: A Cognitive-Inspired End-to-End Reasoning Framework for Operations Research
- URL: http://arxiv.org/abs/2506.01326v1
- Date: Mon, 02 Jun 2025 05:11:21 GMT
- Title: ORMind: A Cognitive-Inspired End-to-End Reasoning Framework for Operations Research
- Authors: Zhiyuan Wang, Bokui Chen, Yinya Huang, Qingxing Cao, Ming He, Jianping Fan, Xiaodan Liang,
- Abstract summary: We introduce ORMind, a cognitive-inspired framework that enhances optimization through counterfactual reasoning.<n>Our approach emulates human cognition, implementing an end-to-end workflow that transforms requirements into mathematical models and executable code.<n>It is currently being tested internally in Lenovo's AI Assistant, with plans to enhance optimization capabilities for both business and consumer customers.
- Score: 53.736407871322314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Operations research (OR) is widely deployed to solve critical decision-making problems with complex objectives and constraints, impacting manufacturing, logistics, finance, and healthcare outcomes. While Large Language Models (LLMs) have shown promising results in various domains, their practical application in industry-relevant operations research (OR) problems presents significant challenges and opportunities. Preliminary industrial applications of LLMs for operations research face two critical deployment challenges: 1) Self-correction focuses on code syntax rather than mathematical accuracy, causing costly errors; 2) Complex expert selection creates unpredictable workflows that reduce transparency and increase maintenance costs, making them impractical for time-sensitive business applications. To address these business limitations, we introduce ORMind, a cognitive-inspired framework that enhances optimization through counterfactual reasoning. Our approach emulates human cognition, implementing an end-to-end workflow that systematically transforms requirements into mathematical models and executable solver code. It is currently being tested internally in Lenovo's AI Assistant, with plans to enhance optimization capabilities for both business and consumer customers. Experiments demonstrate that ORMind outperforms existing methods, achieving a 9.5\% improvement on the NL4Opt dataset and a 14.6\% improvement on the ComplexOR dataset.
Related papers
- A Practical Approach for Building Production-Grade Conversational Agents with Workflow Graphs [2.7905014064567344]
Large Language Models (LLMs) have led to significant improvements in various service domains.<n>Applying state-of-the-art (SOTA) research to industrial settings presents challenges.
arXiv Detail & Related papers (2025-05-29T02:30:27Z) - ModelingAgent: Bridging LLMs and Mathematical Modeling for Real-World Challenges [72.19809898215857]
We introduce ModelingBench, a novel benchmark featuring real-world-inspired, open-ended problems from math modeling competitions across diverse domains.<n>These tasks require translating natural language into formal mathematical formulations, applying appropriate tools, and producing structured, defensible reports.<n>We also present ModelingAgent, a multi-agent framework that coordinates tool use, supports structured, creative solutions, and generates well-grounded, creative solutions.
arXiv Detail & Related papers (2025-05-21T03:33:23Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM [15.260794368585692]
We propose OR-LLM-Agent, an AI agent framework built on reasoning LLMs for automated Operations Research problem solving.<n>We show that OR-LLM-Agent utilizing DeepSeek-R1 in its framework outperforms advanced methods, including GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, and ORLM, by at least 7% in accuracy.
arXiv Detail & Related papers (2025-03-13T03:40:50Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Unleashing LLM Reasoning Capability via Scalable Question Synthesis from Scratch [54.12139707822201]
We propose ScaleQuest, a novel, scalable, and cost-effective data synthesis method.<n>By generating diverse questions from scratch, we produce a dataset of 1 million problem-solution pairs.<n>Our experiments demonstrate that models trained on our data outperform existing open-source datasets.
arXiv Detail & Related papers (2024-10-24T12:42:04Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability [59.72892401927283]
We evaluate the planning capabilities of OpenAI's o1 models across a variety of benchmark tasks.
Our results reveal that o1-preview outperforms GPT-4 in adhering to task constraints.
arXiv Detail & Related papers (2024-09-30T03:58:43Z) - Retrieval-Augmented Instruction Tuning for Automated Process Engineering Calculations : A Tool-Chaining Problem-Solving Framework with Attributable Reflection [0.0]
We introduce a novel autonomous agent framework leveraging Retrieval-Augmented Instruction-Tuning (RAIT) to enhance open, customizable small code language models (SLMs)
By combining instruction tuned code SLMs with Retrieval-Augmented Code Generation (RACG) using external tools, the agent generates, debugs, and optimize code from natural language specifications.
Our approach addresses the limitations of the current lack of a foundational AI model for specialized process engineering tasks and offers benefits of explainability, knowledge editing, and cost-effectiveness.
arXiv Detail & Related papers (2024-08-28T15:33:47Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.67321902882617]
We propose a viable path for training open-source LLMs capable of optimization modeling and developing solver codes.<n>This work also introduces IndustryOR, the first industrial benchmark for evaluating LLMs in solving practical OR problems.
arXiv Detail & Related papers (2024-05-28T01:55:35Z) - Language Models for Business Optimisation with a Real World Case Study in Production Scheduling [3.224702011999591]
Large Language Models (LLMs) have demonstrated outstanding performance across different language-related tasks.<n>We present an LLM-based framework for automating problem formulation in business optimisation.
arXiv Detail & Related papers (2023-09-22T23:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.