論文の概要: Topology-Guided Multi-Class Cell Context Generation for Digital
Pathology
- arxiv url: http://arxiv.org/abs/2304.02255v1
- Date: Wed, 5 Apr 2023 07:01:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 13:19:53.126265
- Title: Topology-Guided Multi-Class Cell Context Generation for Digital
Pathology
- Title(参考訳): デジタル病理学のためのトポロジー誘導マルチクラスセルコンテキスト生成
- Authors: Shahira Abousamra, Rajarsi Gupta, Tahsin Kurc, Dimitris Samaras, Joel
Saltz and Chao Chen
- Abstract要約: 空間統計学とトポロジカルデータ解析の数学的ツールをいくつか紹介する。
高品質なマルチクラスセルレイアウトを初めて生成する。
トポロジに富んだセルレイアウトは,データ拡張やセル分類などの下流タスクの性能向上に有効であることを示す。
- 参考スコア(独自算出の注目度): 28.43244574309888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In digital pathology, the spatial context of cells is important for cell
classification, cancer diagnosis and prognosis. To model such complex cell
context, however, is challenging. Cells form different mixtures, lineages,
clusters and holes. To model such structural patterns in a learnable fashion,
we introduce several mathematical tools from spatial statistics and topological
data analysis. We incorporate such structural descriptors into a deep
generative model as both conditional inputs and a differentiable loss. This
way, we are able to generate high quality multi-class cell layouts for the
first time. We show that the topology-rich cell layouts can be used for data
augmentation and improve the performance of downstream tasks such as cell
classification.
- Abstract(参考訳): デジタル病理学では、細胞の空間的文脈は細胞分類、癌診断、予後において重要である。
しかし、このような複雑な細胞コンテキストをモデル化することは困難である。
細胞は異なる混合物、系統、クラスター、穴を形成する。
このような構造パターンを学習可能な方法でモデル化するために,空間統計学とトポロジカルデータ解析からいくつかの数学的ツールを導入する。
このような構造記述子を条件入力と微分可能な損失の両方として深部生成モデルに組み込む。
これにより、高品質なマルチクラスセルレイアウトを初めて生成することが可能になります。
トポロジに富んだセルレイアウトは,データ拡張やセル分類などの下流タスクの性能向上に有効であることを示す。
関連論文リスト
- UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
我々は,顕微鏡画像のラベル付けを行うセル分類パイプラインを開発した。
次に、分類ラベルに基づいて分類モデルを訓練する。
2種類のセグメンテーションモデルを、丸みを帯びた形状と不規則な形状のセグメンテーションセルに展開する。
論文 参考訳(メタデータ) (2023-10-22T08:11:08Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
本研究では,最先端のグラフベース拡散モデルを用いて生物学的に意味のある細胞グラフを生成する。
本研究では, グラフ拡散モデルを用いて, 3次リンパ構造(TLS)の分布を正確に学習できることを示す。
論文 参考訳(メタデータ) (2023-10-10T14:37:17Z) - VOLTA: an Environment-Aware Contrastive Cell Representation Learning for
Histopathology [0.3436781233454516]
病理組織像における細胞表現学習のための自己組織化フレームワーク(VOLTA)を提案する。
我々は、世界中の複数の機関から収集されたデータに関する広範な実験にモデルを適用した。
提案フレームワークの有効性を明らかにするため, 卵巣癌および子宮内膜癌にVOLTAを応用した。
論文 参考訳(メタデータ) (2023-03-08T16:35:47Z) - CCRL: Contrastive Cell Representation Learning [0.0]
本稿では,H&Eスライドにおけるセル識別のためのコントラストセル表現学習(CCRL)モデルを提案する。
このモデルは、組織の種類によって異なる2つのデータセットにまたがる大きなマージンで、現在利用可能なすべてのセルクラスタリングモデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-08-12T18:12:03Z) - Topological Data Analysis in Time Series: Temporal Filtration and
Application to Single-Cell Genomics [13.173307471333619]
単細胞トポロジカル単純解析(scTSA)を提案する。
このアプローチを細胞の局所ネットワークから単細胞遺伝子発現プロファイルに適用すると、これまで見つからなかった細胞生態のトポロジーが明らかになる。
38,731細胞,25細胞タイプ,12時間ステップにまたがるゼブラフィッシュ胚発生の単一細胞RNA-seqデータに基づいて,本研究は胃粘膜を最も重要な段階として強調する。
論文 参考訳(メタデータ) (2022-04-29T12:46:14Z) - Interpretable Single-Cell Set Classification with Kernel Mean Embeddings [14.686560033030101]
Kernel Mean Embeddingは、各プロファイルされた生物学的サンプルの細胞景観をエンコードする。
簡単な線形分類器を訓練し、3つのフローおよび質量データセットの最先端の分類精度を実現する。
論文 参考訳(メタデータ) (2022-01-18T21:40:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Multi-Class Cell Detection Using Spatial Context Representation [23.542218679448624]
デジタル病理学では、細胞の自動診断および予後タスクにおいて、細胞の検出と分類の両方が重要である。
既存の方法は、個々の細胞の形態学的外観に焦点をあてるが、実際は、病理学者は、しばしばその空間的文脈を通して細胞クラスを推測する。
本研究では,空間的文脈情報を明示的に組み込んだ検出と分類のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-10-10T19:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。