論文の概要: Learning to Predict Short-Term Volatility with Order Flow Image Representation
- arxiv url: http://arxiv.org/abs/2304.02472v2
- Date: Wed, 20 Mar 2024 11:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 23:07:03.722517
- Title: Learning to Predict Short-Term Volatility with Order Flow Image Representation
- Title(参考訳): 秩序流画像表現による短期変動予測の学習
- Authors: Artem Lensky, Mingyu Hao,
- Abstract要約: 本論文は、注文フロー情報を用いてBitcoin価格の短期的な変動を予測するという課題に対処する。
本稿では,一定時間間隔(スナップショット)で順序フローデータを画像に変換する手法を提案する。
次にイメージを使用して、単純な3層畳み込みニューラルネットワーク(CNN)と、より高度なResNet-18とConvMixerの両方をトレーニングする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Introduction: The paper addresses the challenging problem of predicting the short-term realized volatility of the Bitcoin price using order flow information. The inherent stochastic nature and anti-persistence of price pose difficulties in accurate prediction. Methods: To address this, we propose a method that transforms order flow data over a fixed time interval (snapshots) into images. The order flow includes trade sizes, trade directions, and limit order book, and is mapped into image colour channels. These images are then used to train both a simple 3-layer Convolutional Neural Network (CNN) and more advanced ResNet-18 and ConvMixer, with additionally supplementing them with hand-crafted features. The models are evaluated against classical GARCH, Multilayer Perceptron trained on raw data, and a naive guess method that considers current volatility as a prediction. Results: The experiments are conducted using price data from January 2021 and evaluate model performance in terms of root mean square error (RMSPE). The results show that our order flow representation with a CNN as a predictive model achieves the best performance, with an RMSPE of 0.85+/-1.1 for the model with aggregated features and 1.0+/-1.4 for the model without feature supplementation. ConvMixer with feature supplementation follows closely. In comparison, the RMSPE for the naive guess method was 1.4+/-3.0.
- Abstract(参考訳): 導入: 注文フロー情報を用いてBitcoin価格の短期的な変動を予測するという課題に対処する。
本質的に確率的な性質と価格の反持続性は正確な予測に困難をもたらす。
方法: これを解決するため, 一定時間間隔(スナップショット)で順序流データを画像に変換する手法を提案する。
注文フローは、取引サイズ、取引方向、リミットオーダーブックを含み、画像カラーチャネルにマップされる。
これらの画像は、単純な3層畳み込みニューラルネットワーク(CNN)と、より高度なResNet-18とConvMixerの両方をトレーニングするために使用され、さらに手作りの機能を補う。
モデルは、従来のGARCH、生データに基づいて訓練された多層パーセプトロン、および現在のボラティリティを予測として考慮した単純推定法に対して評価される。
結果:2021年1月の価格データを用いて実験を行い,根平均二乗誤差(RMSPE)によるモデル性能の評価を行った。
その結果, 予測モデルとしてCNNを用いた順序流表現は, 集約された特徴を持つモデルに対して0.85+/-1.1, 特徴補足を伴わないモデルに対して1.0+/-1.4のRMSPEで, 最高の性能が得られることがわかった。
機能追加のConvMixerは、密接に従う。
一方, ナイーブ推定法における RMSPE は 1.4+/-3.0 であった。
関連論文リスト
- A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images [8.073306549051802]
本稿では,中国Aシェア市場の株価変動を予測するために,Sequence-based Multi-scale Fusion Regression Convolutional Neural Network (SMSFR-CNN) という新しい手法を提案する。
CNNを利用して逐次的特徴を学習し、それらを画像特徴と組み合わせることで、Aシェア市場株価データセットにおける株価トレンド予測の精度を向上させる。
論文 参考訳(メタデータ) (2024-10-25T03:50:54Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks [0.0]
本研究では,HMM(Hidden Markov Models)とニューラルネットワークを組み合わせた新たなアプローチを提案する。
新型コロナウイルスの期間(2019-2022年)に、この二重モデルアプローチはシャープ比0.77で83%のリターンを達成した。
論文 参考訳(メタデータ) (2024-07-29T10:26:52Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction [61.295716741720284]
TokenUnifyは、ランダムトークン予測、次のトークン予測、次のトークン予測を統合する新しい事前学習手法である。
TokenUnifyと共同で,超高解像度の大規模電子顕微鏡画像データセットを構築した。
このデータセットには1億2000万以上の注釈付きボクセルが含まれており、これまでで最大のニューロンセグメンテーションデータセットとなっている。
論文 参考訳(メタデータ) (2024-05-27T05:45:51Z) - Computational Tradeoffs in Image Synthesis: Diffusion, Masked-Token, and Next-Token Prediction [79.78050867137594]
拡散、マスク付きトーケン予測、および次のトーケン予測はすべてトランスフォーマーネットワークアーキテクチャを使用する。
FLOPで測定された計算予算のレンズを用いて,各手法のスケーラビリティを解析する。
次点予測によって導かれるトークン予測手法は, 後続のプロンプト上での拡散率を著しく上回ることがわかった。
論文 参考訳(メタデータ) (2024-05-21T21:49:39Z) - A Study on Stock Forecasting Using Deep Learning and Statistical Models [3.437407981636465]
本稿では、株価予測のための多くのディープラーニングアルゴリズムを概説し、トレーニングとテストにs&p500インデックスデータを用いた。
自動回帰積分移動平均モデル、リカレントニューラルネットワークモデル、長い短期モデル、畳み込みニューラルネットワークモデル、完全な畳み込みニューラルネットワークモデルなど、さまざまなモデルについて議論する。
論文 参考訳(メタデータ) (2024-02-08T16:45:01Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
近年のテキスト・トゥ・イメージ(T2I)拡散モデルでは、既成の高密度予測器では予測できないことがある。
我々は,事前学習したT2Iモデルを用いたパイプラインDMPを,高密度予測タスクの先駆けとして導入する。
限られたドメインのトレーニングデータにもかかわらず、この手法は任意の画像に対して忠実に推定し、既存の最先端のアルゴリズムを超越する。
論文 参考訳(メタデータ) (2023-11-30T18:59:44Z) - Application of Convolutional Neural Networks with Quasi-Reversibility
Method Results for Option Forecasting [11.730033307068405]
我々は、92,846社のデータを分析するために、ブラック・スコールズ方程式の新しい経験的数学的モデルを作成し、評価する。
準可逆法 (QRM) を用いて, ある日, 将来のオプション価格を予測し, 逆問題として, 時間内におけるブラック・スコールズ(BS)方程式を解く。
研究の現在の段階は、QRMと畳み込みニューラルネットワーク(CNN)を組み合わせることで、多数のデータポイントを同時に学習する。
論文 参考訳(メタデータ) (2022-08-25T04:08:59Z) - Beyond Point Estimate: Inferring Ensemble Prediction Variation from
Neuron Activation Strength in Recommender Systems [21.392694985689083]
Ensemble Methodは、予測不確実性推定のための最先端のベンチマークである。
予測のバリエーションは、様々なランダム性源から生じることを観察する。
本稿では,ニューロンの活性化強度の予測変動を推定し,活性化強度の特徴から強い予測力を示す。
論文 参考訳(メタデータ) (2020-08-17T00:08:27Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
既存の敵防衛手法の大部分は、予測精度を犠牲にして堅牢性を実現することが示されている。
本稿では,ロバストおよび高精度画像分類N(RAIN)と呼ぶ新しい前処理フレームワークを提案する。
RAINは入力に対してランダム化を適用して、モデルフォワード予測パスと後方勾配パスの関係を壊し、モデルロバスト性を改善する。
STL10 と ImageNet のデータセットを用いて、様々な種類の敵攻撃に対する RAIN の有効性を検証する。
論文 参考訳(メタデータ) (2020-04-24T02:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。