Learning to Predict Short-Term Volatility with Order Flow Image Representation
- URL: http://arxiv.org/abs/2304.02472v2
- Date: Wed, 20 Mar 2024 11:33:35 GMT
- Title: Learning to Predict Short-Term Volatility with Order Flow Image Representation
- Authors: Artem Lensky, Mingyu Hao,
- Abstract summary: The paper addresses the challenging problem of predicting the short-term realized volatility of the Bitcoin price using order flow information.
We propose a method that transforms order flow data over a fixed time interval (snapshots) into images.
Images are then used to train both a simple 3-layer Convolutional Neural Network (CNN) and more advanced ResNet-18 and ConvMixer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Introduction: The paper addresses the challenging problem of predicting the short-term realized volatility of the Bitcoin price using order flow information. The inherent stochastic nature and anti-persistence of price pose difficulties in accurate prediction. Methods: To address this, we propose a method that transforms order flow data over a fixed time interval (snapshots) into images. The order flow includes trade sizes, trade directions, and limit order book, and is mapped into image colour channels. These images are then used to train both a simple 3-layer Convolutional Neural Network (CNN) and more advanced ResNet-18 and ConvMixer, with additionally supplementing them with hand-crafted features. The models are evaluated against classical GARCH, Multilayer Perceptron trained on raw data, and a naive guess method that considers current volatility as a prediction. Results: The experiments are conducted using price data from January 2021 and evaluate model performance in terms of root mean square error (RMSPE). The results show that our order flow representation with a CNN as a predictive model achieves the best performance, with an RMSPE of 0.85+/-1.1 for the model with aggregated features and 1.0+/-1.4 for the model without feature supplementation. ConvMixer with feature supplementation follows closely. In comparison, the RMSPE for the naive guess method was 1.4+/-3.0.
Related papers
- A Novel Hybrid Approach Using an Attention-Based Transformer + GRU Model for Predicting Cryptocurrency Prices [0.0]
We introduce a novel deep learning hybrid model that integrates attention Transformer and Gated Recurrent Unit (GRU) architectures.
By combining the Transformer's strength in capturing long-range patterns with the GRU's ability to model short-term and sequential trends, the hybrid model provides a well-rounded approach to time series forecasting.
We evaluate the performance of our proposed model by comparing it with four other machine learning models.
arXiv Detail & Related papers (2025-04-23T20:00:47Z) - Gaussian Mixture Flow Matching Models [51.976452482535954]
Diffusion models approximate the denoising distribution as a Gaussian and predict its mean, whereas flow matching models re parameterize the Gaussian mean as flow velocity.
They underperform in few-step sampling due to discretization error and tend to produce over-saturated colors under classifier-free guidance (CFG)
We introduce a novel probabilistic guidance scheme that mitigates the over-saturation issues of CFG and improves image generation quality.
arXiv Detail & Related papers (2025-04-07T17:59:42Z) - A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images [8.073306549051802]
This paper proposes a novel method, named Sequence-based Multi-scale Fusion Regression Convolutional Neural Network (SMSFR-CNN) for predicting stock price movements in the China A-share market.
By utilizing CNN to learn sequential features and combining them with image features, we improve the accuracy of stock trend prediction on the A-share market stock dataset.
arXiv Detail & Related papers (2024-10-25T03:50:54Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks [0.0]
This study introduces a new approach that combines Hidden Markov Models (HMM) and neural networks, integrated with Black-Litterman portfolio optimization.
During the COVID period ( 2019-2022), this dual-model approach achieved a 83% return with a Sharpe ratio of 0.77.
arXiv Detail & Related papers (2024-07-29T10:26:52Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications.
Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space.
We propose Diffusion-based Model Inversion (Diff-MI) attacks to alleviate these issues.
arXiv Detail & Related papers (2024-07-16T06:38:49Z) - TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction [61.295716741720284]
TokenUnify is a novel pretraining method that integrates random token prediction, next-token prediction, and next-all token prediction.
Cooperated with TokenUnify, we have assembled a large-scale electron microscopy (EM) image dataset with ultra-high resolution.
This dataset includes over 120 million annotated voxels, making it the largest neuron segmentation dataset to date.
arXiv Detail & Related papers (2024-05-27T05:45:51Z) - Computational Tradeoffs in Image Synthesis: Diffusion, Masked-Token, and Next-Token Prediction [79.78050867137594]
Diffusion, masked-token prediction, and next-token prediction all use a Transformer network architecture.
We analyze the scalability of each approach through the lens of compute budget measured in FLOPs.
We find that token prediction methods, led by next-token prediction, significantly outperform diffusion on prompt following.
arXiv Detail & Related papers (2024-05-21T21:49:39Z) - A Study on Stock Forecasting Using Deep Learning and Statistical Models [3.437407981636465]
This paper will review many deep learning algorithms for stock price forecasting. We use a record of s&p 500 index data for training and testing.
It will discuss various models, including the Auto regression integration moving average model, the Recurrent neural network model, the long short-term model, the convolutional neural network model, and the full convolutional neural network model.
arXiv Detail & Related papers (2024-02-08T16:45:01Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Application of Convolutional Neural Networks with Quasi-Reversibility
Method Results for Option Forecasting [11.730033307068405]
We create and evaluate new empirical mathematical models for the Black-Scholes equation to analyze data for 92,846 companies.
We solve the Black-Scholes (BS) equation forwards in time as an ill-posed inverse problem, using the Quasi-Reversibility Method (QRM) to predict option price for the future one day.
The current stage of research combines QRM with Convolutional Neural Networks (CNN), which learn information across a large number of data points simultaneously.
arXiv Detail & Related papers (2022-08-25T04:08:59Z) - Beyond Point Estimate: Inferring Ensemble Prediction Variation from
Neuron Activation Strength in Recommender Systems [21.392694985689083]
Ensemble method is one state-of-the-art benchmark for prediction uncertainty estimation.
We observe that prediction variations come from various randomness sources.
We propose to infer prediction variation from neuron activation strength and demonstrate the strong prediction power from activation strength features.
arXiv Detail & Related papers (2020-08-17T00:08:27Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
It has been shown that the majority of existing adversarial defense methods achieve robustness at the cost of sacrificing prediction accuracy.
This paper proposes a novel preprocessing framework, which we term Robust and Accurate Image classificatioN(RAIN)
RAIN applies randomization over inputs to break the ties between the model forward prediction path and the backward gradient path, thus improving the model robustness.
We conduct extensive experiments on the STL10 and ImageNet datasets to verify the effectiveness of RAIN against various types of adversarial attacks.
arXiv Detail & Related papers (2020-04-24T02:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.