論文の概要: DEFLOW: Self-supervised 3D Motion Estimation of Debris Flow
- arxiv url: http://arxiv.org/abs/2304.02569v1
- Date: Wed, 5 Apr 2023 16:40:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 12:06:42.743217
- Title: DEFLOW: Self-supervised 3D Motion Estimation of Debris Flow
- Title(参考訳): DEFLOW:デブリ流の自己監督型3次元運動推定
- Authors: Liyuan Zhu, Yuru Jia, Shengyu Huang, Nicholas Meyer, Andreas Wieser,
Konrad Schindler, Jordan Aaron
- Abstract要約: 土石流の3次元運動推定モデルであるDefLOWを提案する。
我々は、シーンの帰納バイアスを組み込むために、新しいマルチレベルセンサー融合アーキテクチャとセルフスーパービジョンを採用する。
本モデルでは,我々のデータセット上での最先端の光学的流れと深度推定を実現し,デブリ流の運動推定を完全に自動化する。
- 参考スコア(独自算出の注目度): 19.240172015210586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing work on scene flow estimation focuses on autonomous driving and
mobile robotics, while automated solutions are lacking for motion in nature,
such as that exhibited by debris flows. We propose DEFLOW, a model for 3D
motion estimation of debris flows, together with a newly captured dataset. We
adopt a novel multi-level sensor fusion architecture and self-supervision to
incorporate the inductive biases of the scene. We further adopt a multi-frame
temporal processing module to enable flow speed estimation over time. Our model
achieves state-of-the-art optical flow and depth estimation on our dataset, and
fully automates the motion estimation for debris flows. The source code and
dataset are available at project page.
- Abstract(参考訳): シーンフロー推定に関する既存の研究は、自律走行と移動ロボットに焦点を当てているが、自動化されたソリューションは、デブリフローが示すような自然の運動に欠けている。
本稿では,新たに取得したデータセットとともに,デブリ流れの3次元運動推定モデルDefLOWを提案する。
我々は,シーンのインダクティブバイアスを取り入れるために,新しいマルチレベルセンサ融合アーキテクチャと自己スーパービジョンを採用する。
さらに,時間とともにフロー速度を推定できるマルチフレーム時間処理モジュールを採用した。
本モデルでは,我々のデータセット上で最先端の光学的流れと深さ推定を行い,デブリ流れの運動推定を完全自動化する。
ソースコードとデータセットは、プロジェクトページで入手できる。
関連論文リスト
- Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction [14.866463843514156]
Occ Flowは、カメラ入力のみを使用して、関節の3D占有率と占有率の予測を行う最初の自己教師型作業である。
我々のアプローチは、動的オブジェクトの依存関係をキャプチャするために、新しい注意に基づく時間融合モジュールを組み込んでいる。
本手法は3次元容積流れ場に微分可能レンダリングを拡張する。
論文 参考訳(メタデータ) (2024-07-10T12:20:11Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - DetFlowTrack: 3D Multi-object Tracking based on Simultaneous
Optimization of Object Detection and Scene Flow Estimation [23.305159598648924]
オブジェクト検出とシーンフロー推定の同時最適化に基づく3次元MOTフレームワークを提案する。
特に回転を伴う動きの場合のより正確なシーンフローラベルについて,ボックス変換に基づくシーンフローグラウンド真理計算法を提案する。
KITTI MOTデータセットの実験結果は、回転を伴う極運動下での最先端とロバスト性に対して競合する結果を示した。
論文 参考訳(メタデータ) (2022-03-04T07:06:47Z) - Occlusion Guided Self-supervised Scene Flow Estimation on 3D Point
Clouds [4.518012967046983]
2つの連続時間フレーム間のスパースサンプリング点の3次元空間における流れを理解することは、現代の幾何学駆動系の中核石である。
本稿では,咬合下の3次元シーンフロー推定のための新しい自己教師あり学習法とアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-04-10T09:55:19Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
画像内の動きのぼかしは、基本的なコンピュータビジョンの問題に実用的な関心を持つ可能性があります。
本研究では,単一動画像からの光流れをエンドツーエンドで推定する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:45:18Z) - Weakly Supervised Learning of Rigid 3D Scene Flow [81.37165332656612]
本研究では,剛体体として動くエージェント群によって説明できる3次元シーンを多用したデータ駆動シーンフロー推定アルゴリズムを提案する。
4種類の自律運転データセットにおいて,提案手法の有効性と一般化能力を示す。
論文 参考訳(メタデータ) (2021-02-17T18:58:02Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
本稿では,複数の動的物体の6-DoF動作,エゴモーション,深度を,監督なしで一眼レフカメラで明示的にモデル化する,エンドツーエンドのジョイントトレーニングフレームワークを提案する。
筆者らのフレームワークは,最先端の深度・動き推定法より優れていた。
論文 参考訳(メタデータ) (2021-02-04T14:26:42Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
本論文では,LiDARセンサが生成する3次元点群と,環境の動的なマップの両方を利用するワンステージ検出器と予測器を開発した。
当社のマルチタスクモデルは、それぞれの別々のモジュールよりも高い精度を実現し、計算を節約します。
論文 参考訳(メタデータ) (2021-01-20T00:31:52Z) - Do not trust the neighbors! Adversarial Metric Learning for
Self-Supervised Scene Flow Estimation [0.0]
シーンフローは動的3次元シーンの個々の点に3次元運動ベクトルを推定するタスクである。
本稿では,3次元シーンフローベンチマークと,トレーニングフローモデルのための新しい自己教師型セットアップを提案する。
我々は,移動コヒーレンスを保ち,多くの自監督ベースラインが把握できない局所的なジオメトリーを維持できることを発見した。
論文 参考訳(メタデータ) (2020-11-01T17:41:32Z) - Self-Supervised Learning of Non-Rigid Residual Flow and Ego-Motion [63.18340058854517]
動的3次元シーンに対する非剛性残留流とエゴ運動流の連成推定によるエンドツーエンドのシーンフロー学習法を提案する。
我々は、点クラウドシーケンスの時間的一貫性性に基づいて、自己監督的な信号で教師付きフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-09-22T11:39:19Z) - Any Motion Detector: Learning Class-agnostic Scene Dynamics from a
Sequence of LiDAR Point Clouds [4.640835690336654]
動き検出と動きパラメータ推定のための時間的文脈アグリゲーションの新しいリアルタイム手法を提案する。
本稿では,固有点雲列の固有オドメトリック変換に匹敵する性能で,リアルタイムな推論を実現するためのエゴモーション補償層を提案する。
論文 参考訳(メタデータ) (2020-04-24T10:40:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。