Generative Novel View Synthesis with 3D-Aware Diffusion Models
- URL: http://arxiv.org/abs/2304.02602v1
- Date: Wed, 5 Apr 2023 17:15:47 GMT
- Title: Generative Novel View Synthesis with 3D-Aware Diffusion Models
- Authors: Eric R. Chan, Koki Nagano, Matthew A. Chan, Alexander W. Bergman,
Jeong Joon Park, Axel Levy, Miika Aittala, Shalini De Mello, Tero Karras and
Gordon Wetzstein
- Abstract summary: We present a diffusion-based model for 3D-aware generative novel view synthesis from as few as a single input image.
Our method makes use of existing 2D diffusion backbones but, crucially, incorporates geometry priors in the form of a 3D feature volume.
In addition to generating novel views, our method has the ability to autoregressively synthesize 3D-consistent sequences.
- Score: 96.78397108732233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a diffusion-based model for 3D-aware generative novel view
synthesis from as few as a single input image. Our model samples from the
distribution of possible renderings consistent with the input and, even in the
presence of ambiguity, is capable of rendering diverse and plausible novel
views. To achieve this, our method makes use of existing 2D diffusion backbones
but, crucially, incorporates geometry priors in the form of a 3D feature
volume. This latent feature field captures the distribution over possible scene
representations and improves our method's ability to generate view-consistent
novel renderings. In addition to generating novel views, our method has the
ability to autoregressively synthesize 3D-consistent sequences. We demonstrate
state-of-the-art results on synthetic renderings and room-scale scenes; we also
show compelling results for challenging, real-world objects.
Related papers
- ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis [63.169364481672915]
We propose textbfViewCrafter, a novel method for synthesizing high-fidelity novel views of generic scenes from single or sparse images.
Our method takes advantage of the powerful generation capabilities of video diffusion model and the coarse 3D clues offered by point-based representation to generate high-quality video frames.
arXiv Detail & Related papers (2024-09-03T16:53:19Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation [14.064983137553353]
We aim to enhance the quality and functionality of generative diffusion models for the task of creating controllable, photorealistic human avatars.
We achieve this by integrating a 3D morphable model into the state-of-the-art multi-view-consistent diffusion approach.
Our proposed framework is the first diffusion model to enable the creation of fully 3D-consistent, animatable, and photorealistic human avatars.
arXiv Detail & Related papers (2024-01-09T18:59:04Z) - WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space [77.92350895927922]
We propose WildFusion, a new approach to 3D-aware image synthesis based on latent diffusion models (LDMs)
Our 3D-aware LDM is trained without any direct supervision from multiview images or 3D geometry.
This opens up promising research avenues for scalable 3D-aware image synthesis and 3D content creation from in-the-wild image data.
arXiv Detail & Related papers (2023-11-22T18:25:51Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
arXiv Detail & Related papers (2023-08-27T11:52:00Z) - DreamSparse: Escaping from Plato's Cave with 2D Frozen Diffusion Model
Given Sparse Views [20.685453627120832]
Existing methods often struggle with producing high-quality results or necessitate per-object optimization in such few-view settings.
DreamSparse is capable of synthesizing high-quality novel views for both object and scene-level images.
arXiv Detail & Related papers (2023-06-06T05:26:26Z) - SparseFusion: Distilling View-conditioned Diffusion for 3D
Reconstruction [26.165314261806603]
We propose SparseFusion, a sparse view 3D reconstruction approach that unifies recent advances in neural rendering and probabilistic image generation.
Existing approaches typically build on neural rendering with re-projected features but fail to generate unseen regions or handle uncertainty under large viewpoint changes.
arXiv Detail & Related papers (2022-12-01T18:59:55Z) - 3DDesigner: Towards Photorealistic 3D Object Generation and Editing with
Text-guided Diffusion Models [71.25937799010407]
We equip text-guided diffusion models to achieve 3D-consistent generation.
We study 3D local editing and propose a two-step solution.
We extend our model to perform one-shot novel view synthesis.
arXiv Detail & Related papers (2022-11-25T13:50:00Z) - Novel View Synthesis with Diffusion Models [56.55571338854636]
We present 3DiM, a diffusion model for 3D novel view synthesis.
It is able to translate a single input view into consistent and sharp completions across many views.
3DiM can generate multiple views that are 3D consistent using a novel technique called conditioning.
arXiv Detail & Related papers (2022-10-06T16:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.