Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views
- URL: http://arxiv.org/abs/2308.14078v2
- Date: Wed, 20 Dec 2023 09:04:05 GMT
- Title: Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views
- Authors: Zi-Xin Zou, Weihao Cheng, Yan-Pei Cao, Shi-Sheng Huang, Ying Shan,
Song-Hai Zhang
- Abstract summary: We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
- Score: 47.215089338101066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing 3D objects from extremely sparse views is a long-standing and
challenging problem. While recent techniques employ image diffusion models for
generating plausible images at novel viewpoints or for distilling pre-trained
diffusion priors into 3D representations using score distillation sampling
(SDS), these methods often struggle to simultaneously achieve high-quality,
consistent, and detailed results for both novel-view synthesis (NVS) and
geometry. In this work, we present Sparse3D, a novel 3D reconstruction method
tailored for sparse view inputs. Our approach distills robust priors from a
multiview-consistent diffusion model to refine a neural radiance field.
Specifically, we employ a controller that harnesses epipolar features from
input views, guiding a pre-trained diffusion model, such as Stable Diffusion,
to produce novel-view images that maintain 3D consistency with the input. By
tapping into 2D priors from powerful image diffusion models, our integrated
model consistently delivers high-quality results, even when faced with
open-world objects. To address the blurriness introduced by conventional SDS,
we introduce the category-score distillation sampling (C-SDS) to enhance
detail. We conduct experiments on CO3DV2 which is a multi-view dataset of
real-world objects. Both quantitative and qualitative evaluations demonstrate
that our approach outperforms previous state-of-the-art works on the metrics
regarding NVS and geometry reconstruction.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation [54.27399121779011]
We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images.
We show that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods.
arXiv Detail & Related papers (2024-04-04T17:59:57Z) - CAD: Photorealistic 3D Generation via Adversarial Distillation [28.07049413820128]
We propose a novel learning paradigm for 3D synthesis that utilizes pre-trained diffusion models.
Our method unlocks the generation of high-fidelity and photorealistic 3D content conditioned on a single image and prompt.
arXiv Detail & Related papers (2023-12-11T18:59:58Z) - Wonder3D: Single Image to 3D using Cross-Domain Diffusion [105.16622018766236]
Wonder3D is a novel method for efficiently generating high-fidelity textured meshes from single-view images.
To holistically improve the quality, consistency, and efficiency of image-to-3D tasks, we propose a cross-domain diffusion model.
arXiv Detail & Related papers (2023-10-23T15:02:23Z) - DreamSparse: Escaping from Plato's Cave with 2D Frozen Diffusion Model
Given Sparse Views [20.685453627120832]
Existing methods often struggle with producing high-quality results or necessitate per-object optimization in such few-view settings.
DreamSparse is capable of synthesizing high-quality novel views for both object and scene-level images.
arXiv Detail & Related papers (2023-06-06T05:26:26Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - Generative Novel View Synthesis with 3D-Aware Diffusion Models [96.78397108732233]
We present a diffusion-based model for 3D-aware generative novel view synthesis from as few as a single input image.
Our method makes use of existing 2D diffusion backbones but, crucially, incorporates geometry priors in the form of a 3D feature volume.
In addition to generating novel views, our method has the ability to autoregressively synthesize 3D-consistent sequences.
arXiv Detail & Related papers (2023-04-05T17:15:47Z) - Novel View Synthesis with Diffusion Models [56.55571338854636]
We present 3DiM, a diffusion model for 3D novel view synthesis.
It is able to translate a single input view into consistent and sharp completions across many views.
3DiM can generate multiple views that are 3D consistent using a novel technique called conditioning.
arXiv Detail & Related papers (2022-10-06T16:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.