Efficient Quantum Algorithms for Quantum Optimal Control
- URL: http://arxiv.org/abs/2304.02613v2
- Date: Fri, 29 Sep 2023 14:00:54 GMT
- Title: Efficient Quantum Algorithms for Quantum Optimal Control
- Authors: Xiantao Li, Chunhao Wang
- Abstract summary: We present efficient quantum algorithms for solving the quantum optimal control problem.
Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm.
Our quantum algorithms require fault-tolerant quantum computers.
- Score: 2.9370710299422607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present efficient quantum algorithms that are exponentially
faster than classical algorithms for solving the quantum optimal control
problem. This problem involves finding the control variable that maximizes a
physical quantity at time $T$, where the system is governed by a time-dependent
Schr\"odinger equation. This type of control problem also has an intricate
relation with machine learning. Our algorithms are based on a time-dependent
Hamiltonian simulation method and a fast gradient-estimation algorithm. We also
provide a comprehensive error analysis to quantify the total error from various
steps, such as the finite-dimensional representation of the control function,
the discretization of the Schr\"odinger equation, the numerical quadrature, and
optimization. Our quantum algorithms require fault-tolerant quantum computers.
Related papers
- Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Limitations for Quantum Algorithms to Solve Turbulent and Chaotic Systems [0.2624902795082451]
We investigate the limitations of quantum computers for solving nonlinear dynamical systems.
We provide a significant limitation for any quantum algorithm that aims to output a quantum state that approximates the normalized solution vector.
arXiv Detail & Related papers (2023-07-13T11:06:02Z) - Quantum optimization algorithm based on multistep quantum computation [0.0]
We present a quantum algorithm for finding the minimum of a function based on multistep quantum computation.
In this algorithm, the dimension of the search space of the problem can be reduced exponentially step by step.
We have tested the algorithm for some continuous test functions.
arXiv Detail & Related papers (2023-06-30T01:58:23Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Quantum Optimization of Maximum Independent Set using Rydberg Atom
Arrays [39.76254807200083]
We experimentally investigate quantum algorithms for solving the Maximum Independent Set problem.
We find the problem hardness is controlled by the solution degeneracy and number of local minima.
On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions.
arXiv Detail & Related papers (2022-02-18T19:00:01Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
We tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems.
We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
Our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation.
arXiv Detail & Related papers (2021-07-22T08:12:49Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.