Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing
- URL: http://arxiv.org/abs/2107.10508v1
- Date: Thu, 22 Jul 2021 08:12:49 GMT
- Title: Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing
- Authors: Tobias Fankhauser, Marc E. Sol\`er, Rudolf M. F\"uchslin, Kurt
Stockinger
- Abstract summary: We tackle the multiple query optimization problem (MQO) which is an important NP-hard problem in the area of data-intensive problems.
We propose a novel hybrid classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
Our algorithm shows a qubit efficiency of close to 99% which is almost a factor of 2 higher compared to the state of the art implementation.
- Score: 1.7077661158850292
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing promises to solve difficult optimization problems in
chemistry, physics and mathematics more efficiently than classical computers,
but requires fault-tolerant quantum computers with millions of qubits. To
overcome errors introduced by today's quantum computers, hybrid algorithms
combining classical and quantum computers are used. In this paper we tackle the
multiple query optimization problem (MQO) which is an important NP-hard problem
in the area of data-intensive problems. We propose a novel hybrid
classical-quantum algorithm to solve the MQO on a gate-based quantum computer.
We perform a detailed experimental evaluation of our algorithm and compare its
performance against a competing approach that employs a quantum annealer --
another type of quantum computer. Our experimental results demonstrate that our
algorithm currently can only handle small problem sizes due to the limited
number of qubits available on a gate-based quantum computer compared to a
quantum computer based on quantum annealing. However, our algorithm shows a
qubit efficiency of close to 99% which is almost a factor of 2 higher compared
to the state of the art implementation. Finally, we analyze how our algorithm
scales with larger problem sizes and conclude that our approach shows promising
results for near-term quantum computers.
Related papers
- A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum Algorithm Based Heuristic to Hide Sensitive Itemsets [1.8419202109872088]
We present a quantum approach to solve a well-studied problem in the context of data sharing.
We present results on experiments involving small datasets to illustrate how the problem could be solved using quantum algorithms.
arXiv Detail & Related papers (2024-02-12T20:44:46Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Solving various NP-Hard problems using exponentially fewer qubits on a
Quantum Computer [0.0]
NP-hard problems are not believed to be exactly solvable through general time algorithms.
In this paper, we build upon a proprietary methodology which logarithmically scales with problem size.
These algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256.
arXiv Detail & Related papers (2023-01-17T16:03:33Z) - NP-hard but no longer hard to solve? Using quantum computing to tackle
optimization problems [1.1470070927586016]
We discuss the field of quantum optimization where we solve optimisation problems using quantum computers.
We demonstrate this through a proper use case and discuss the current quality of quantum computers.
We conclude with discussion on some recent quantum optimization breakthroughs and the current status and future directions.
arXiv Detail & Related papers (2022-12-21T12:56:37Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.