Overlapping qubits from non-isometric maps and de Sitter tensor networks
- URL: http://arxiv.org/abs/2304.02673v3
- Date: Fri, 19 Jan 2024 06:58:38 GMT
- Title: Overlapping qubits from non-isometric maps and de Sitter tensor networks
- Authors: ChunJun Cao, Wissam Chemissany, Alexander Jahn, and Zolt\'an
Zimbor\'as
- Abstract summary: We show that processes in local effective theories can be spoofed with a quantum system with fewer degrees of freedom.
We highlight how approximate overlapping qubits are conceptually connected to Hilbert space dimension verification, degree-of-freedom counting in black holes and holography.
- Score: 41.94295877935867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We construct approximately local observables, or "overlapping qubits", using
non-isometric maps and show that processes in local effective theories can be
spoofed with a quantum system with fewer degrees of freedom, similar to our
expectation in holography. Furthermore, the spoofed system naturally deviates
from an actual local theory in ways that can be identified with features in
quantum gravity. For a concrete example, we construct two MERA toy models of de
Sitter space-time and explain how the exponential expansion in global de Sitter
can be spoofed with many fewer quantum degrees of freedom and that local
physics may be approximately preserved for an exceedingly long time before
breaking down. We highlight how approximate overlapping qubits are conceptually
connected to Hilbert space dimension verification, degree-of-freedom counting
in black holes and holography, and approximate locality in quantum gravity.
Related papers
- Entanglement area law for 1D gauge theories and bosonic systems [1.7499351967216341]
We prove an entanglement area law for a class of 1D quantum systems involving infinite-dimensional local Hilbert spaces.
Our proof relies on new results concerning the robustness of the ground state and spectral gap to the truncation of Hilbert space.
arXiv Detail & Related papers (2022-03-30T02:43:18Z) - Holographic entanglement in spin network states: a focused review [0.38073142980732994]
We focus on spin network states dual to finite regions of space, represented as entanglement graphs in the group field theory approach to quantum gravity.
In particular, spin network states can be interpreted as maps from bulk to boundary, whose holographic behaviour increases with the inhomogeneity of their geometric data.
We review how exceeding a certain threshold of bulk entanglement leads to the emergence of a black hole-like region, revealing intriguing perspectives for quantum cosmology.
arXiv Detail & Related papers (2022-02-10T16:06:45Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Quantum gravity states, entanglement graphs and second-quantized tensor
networks [0.0]
In recent years, the import of quantum information techniques in quantum gravity opened new perspectives in the study of the microscopic structure of spacetime.
We contribute to such a program by establishing a precise correspondence between the quantum information formalism of tensor networks (TN), in the case of projected entangled-pair states (PEPS) generalised to a second-quantized framework, and group field theory (GFT) states.
arXiv Detail & Related papers (2020-12-23T12:20:25Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Entanglement of Local Operators and the Butterfly Effect [0.0]
We study the robustness of quantum and classical information to perturbations implemented by local operator insertions.
We do this by computing multipartite entanglement measures in the Hilbert space of local operators in the Heisenberg picture.
arXiv Detail & Related papers (2020-05-28T19:04:47Z) - Localizable quantum coherence [0.0]
Coherence is a fundamental notion in quantum mechanics, defined relative to a reference basis.
We put forward a notion of localizable coherence as the coherence that can be stored in a particular subsystem.
We show that it can be applied to reveal the real-space structure of states of interest in quantum many-body theory.
arXiv Detail & Related papers (2020-05-06T17:44:05Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.