Geometric monotones of violations of quantum realism
- URL: http://arxiv.org/abs/2412.11633v2
- Date: Thu, 30 Jan 2025 12:31:33 GMT
- Title: Geometric monotones of violations of quantum realism
- Authors: Alexandre C. Orthey Jr., Alexander Streltsov,
- Abstract summary: Quantum realism states that projective measurements in quantum systems establish the reality of physical properties, even in the absence of a revealed outcome.
This framework provides a nuanced perspective on the distinction between classical and quantum notions of realism, emphasizing the contextuality and complementarity inherent to quantum systems.
We derive geometric monotones of quantum realism using trace distance, Hilbert-Schmidt distance, Schatten $p$-distances, Bures, and Hellinger distances.
- Score: 89.99666725996975
- License:
- Abstract: Quantum realism, as introduced by Bilobran and Angelo [EPL 112, 40005 (2015)], states that projective measurements in quantum systems establish the reality of physical properties, even in the absence of a revealed outcome. This framework provides a nuanced perspective on the distinction between classical and quantum notions of realism, emphasizing the contextuality and complementarity inherent to quantum systems. While prior works have quantified violations of quantum realism (VQR) using measures based on entropic distances, here we extend the theoretical framework to geometric distances. Building on an informational approach, we derive geometric monotones of VQR using trace distance, Hilbert-Schmidt distance, Schatten $p$-distances, Bures, and Hellinger distances. We identify Bures and Hellinger distances as uniquely satisfying all minimal criteria for a bona fide VQR monotone. Remarkably, these distances can be expressed in terms of symmetric R\'enyi and Sandwiched R\'enyi divergences, aligning geometric and entropic approaches. Our findings suggest that the realism-information relation implies a deep connection between geometric and entropic frameworks, with only those geometric distances expressible as entropic quantities qualifying as valid monotones of VQR. This work highlights the theoretical and practical advantages of geometric distances, particularly in contexts where computational simplicity or symmetry is important.
Related papers
- Intrinsic Quantum Mpemba Effect in Markovian Systems and Quantum Circuits [9.979018524312751]
The quantum Mpemba effect (QME) describes the counterintuitive phenomenon in which a system farther from equilibrium reaches steady state faster than one closer to equilibrium.
Here we propose the intrinsic quantum Mpemba effect (IQME), defined using the trajectory length traced by the quantum state as a more appropriate measure of distance.
This work deepens our understanding of quantum state evolution and lays the foundation for accurately capturing novel quantum dynamical behaviour.
arXiv Detail & Related papers (2024-11-27T15:00:59Z) - Quantum geometry embedded in unitarity of evolution: revealing its impacts as geometric oscillation and dephasing in spin resonance and crystal bands [0.29127054707887967]
We show how geometry emerges in quantum as an intrinsic consequence of unitary evolution.
We exemplify geometric observables, such as oscillation, dephasing, in spin and band scenarios.
arXiv Detail & Related papers (2024-06-22T13:16:51Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Local geometry and quantum geometric tensor of mixed states [7.929082702089823]
We generalize the geometry of pure quantum states to mixed quantum states via the density matrix and its purification.
The gauge-invariant QGT of mixed states is derived, whose real and imaginary parts are the Bures metric and the Uhlmann form, respectively.
In contrast to the imaginary part of the pure-state QGT that is proportional to the Berry curvature, the Uhlmann form vanishes identically for ordinary physical processes.
arXiv Detail & Related papers (2023-05-12T16:42:33Z) - Geometric phases, Everett's many-worlds interpretation of quantum
mechanics, and wormholes [0.0]
We show how the formalism of geometric phases in adiabatic quantum dynamics provides geometric realisations permitting to embody'' the Everett's many-worlds interpretation of quantum mechanics.
We show that this geometric realisation is intimately related to quantum gravity, showing that the many-world interpretation can be consistent with quantum gravity.
arXiv Detail & Related papers (2023-02-27T10:38:05Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Geometric aspects of analog quantum search evolutions [0.0]
We show that the Farhi-Gutmann time optimal analog quantum search evolution is characterized by unit efficiency dynamical trajectories traced on a projective Hilbert space.
We briefly discuss possible extensions of our work to the geometric analysis of the efficiency of thermal trajectories of relevance in quantum computing tasks.
arXiv Detail & Related papers (2020-08-18T00:10:38Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.