Emission spectral non-Markovianity in qubit-cavity systems in the
ultrastrong coupling regime
- URL: http://arxiv.org/abs/2304.02675v1
- Date: Wed, 5 Apr 2023 18:10:20 GMT
- Title: Emission spectral non-Markovianity in qubit-cavity systems in the
ultrastrong coupling regime
- Authors: Chenyi Zhang, Minghong Yu, Yiying Yan, Lipeng Chen, Zhiguo L\"u, Yang
Zhao
- Abstract summary: We study the emission spectra of dissipative Rabi and Jaynes-Cummings models in the non-Markovian and ultrastrong coupling regimes.
- Score: 6.886982050140102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the emission spectra of dissipative Rabi and Jaynes-Cummings models
in the non-Markovian and ultrastrong coupling regimes. We have derived a
polaron-transformed Nakajima-Zwanzig master equation (PTNZE) to calculate the
emission spectra, which eliminates the well known limitations of the Markovian
approximation and the standard second-order perturbation. Using the
time-dependent variational approach as benchmark, the PTNZE is found to yield
accurate emission spectra in certain ultrastrong coupling regimes where the
standard second-order Nakajima-Zwanzig master equation breaks down. It is shown
that the emission spectra of the dissipative Rabi and Jaynes-Cummings models
are in general asymmetric under various initial conditions. Direct comparisons
of spectra for the two models illustrate the essential role of the qubit-cavity
counter-rotating term and the spectra features under different qubit-cavity
coupling strengths and system initial conditions.
Related papers
- Distance-dependent emission spectrum from two qubits in a
strong-coupling regime [0.0]
Emission spectrum of two distant qubits strongly coupled to a waveguide is studied.
numerical approach combines the Dirac-Frenkel time-dependent variational principle with the multiple Davydov $D_1$ ansatz.
Results provide insights into the emission spectral features of the two distant qubits in the strong light-matter coupling regime.
arXiv Detail & Related papers (2023-04-21T16:16:26Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Robust, Nonparametric, Efficient Decomposition of Spectral Peaks under
Distortion and Interference [0.0]
We propose a decomposition method for the spectral peaks in an observed frequency spectrum, which is efficiently acquired by utilizing the Fast Fourier Transform.
We model the peaks in spectrum as pseudo-symmetric functions, where the only constraint is a nonincreasing behavior around a central frequency when the distance increases.
Our approach is more robust against arbitrary distortion, interference and noise on the spectrum that may be caused by an observation system.
arXiv Detail & Related papers (2022-04-18T17:08:37Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Stochastic exciton-scattering theory of optical lineshapes: Renormalized
many-body contributions [5.787049285733455]
We build upon a model to account for non-stationary background processes produced by broad-band pulsed laser stimulation.
We consider the contribution of pair-fluctuations arising from the full bosonic many-body Hamiltonian within a mean-field approximation.
arXiv Detail & Related papers (2022-04-04T20:16:17Z) - Characterization of an atom interferometer in the quasi-Bragg regime [58.720142291102135]
We focus on an intermediate regime between the Raman-Nath and the Bragg regimes, the so-called quasi-Bragg regime.
The experimental results are in a good agreement with a full numerical integration of the Schr"odinger equation.
arXiv Detail & Related papers (2021-12-06T14:49:45Z) - Spectrally Multiplexed Hong-Ou-Mandel Interference [18.5051344410089]
We demonstrate spectrally-resolved two-photon "Hong-Ou-Mandel" (HOM) interference.
We also simulate the secret key generation rate using current and state-of-the-art parameters.
arXiv Detail & Related papers (2021-11-26T17:18:15Z) - Simulation of absorption spectra of molecular aggregates: a Hierarchy of
Stochastic Pure States approach [68.8204255655161]
hierarchy of pure states (HOPS) provides a formally exact solution based on local, trajectories.
Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregares requires a formulation in terms of normalized trajectories.
arXiv Detail & Related papers (2021-11-01T16:59:54Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Atomic Spectra in a Six-Level Scheme for Electromagnetically Induced
Transparency and Autler-Townes Splitting in Rydberg Atoms [58.720142291102135]
We investigate electromagnetically induced transparency (EIT) and Autler-Townes splitting in Rydberg rubidium atoms for a six-level excitation scheme.
One radio-frequency field simultaneously couples to two high-laying Rydberg states and results in interesting atomic spectra observed in the EIT lines.
We present two theoretical models for this atomic system, where these two models capture different aspects of the observed spectra.
arXiv Detail & Related papers (2020-09-28T20:32:51Z) - Variational approach to time-dependent fluorescence of a driven qubit [7.8094190319190275]
We study time-dependent fluorescence spectra of a driven qubit in the weak to strong qubit-reservoir coupling regimes.
Our method agrees well with the time-local master-equation approach in the weak-coupling regime.
Our formalism provides a unique perspective to interpret time-dependent spectra.
arXiv Detail & Related papers (2020-08-22T01:33:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.