論文の概要: Learning Stability Attention in Vision-based End-to-end Driving Policies
- arxiv url: http://arxiv.org/abs/2304.02733v1
- Date: Wed, 5 Apr 2023 20:31:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 16:11:21.284257
- Title: Learning Stability Attention in Vision-based End-to-end Driving Policies
- Title(参考訳): 視覚に基づくエンドツーエンド運転ポリシーにおける学習安定性の意識
- Authors: Tsun-Hsuan Wang, Wei Xiao, Makram Chahine, Alexander Amini, Ramin
Hasani, Daniela Rus
- Abstract要約: 本稿では, 制御型リアプノフ関数(CLF)を利用して, エンドツーエンドのビジョンベースのポリシに安定性を付与する手法を提案する。
本稿では,att-CLFに密に統合された不確実性伝播手法を提案する。
- 参考スコア(独自算出の注目度): 100.57791628642624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern end-to-end learning systems can learn to explicitly infer control from
perception. However, it is difficult to guarantee stability and robustness for
these systems since they are often exposed to unstructured, high-dimensional,
and complex observation spaces (e.g., autonomous driving from a stream of pixel
inputs). We propose to leverage control Lyapunov functions (CLFs) to equip
end-to-end vision-based policies with stability properties and introduce
stability attention in CLFs (att-CLFs) to tackle environmental changes and
improve learning flexibility. We also present an uncertainty propagation
technique that is tightly integrated into att-CLFs. We demonstrate the
effectiveness of att-CLFs via comparison with classical CLFs, model predictive
control, and vanilla end-to-end learning in a photo-realistic simulator and on
a real full-scale autonomous vehicle.
- Abstract(参考訳): 現代のエンドツーエンド学習システムは、知覚から制御を明示的に推論することを学ぶことができる。
しかし、これらの系は、しばしば非構造的で高次元で複雑な観測空間(例えば、ピクセル入力のストリームからの自律運転)に露出するため、安定性と堅牢性を保証することは困難である。
本稿では, 制御型リアプノフ関数(CLF)を利用して, エンドツーエンドのビジョンベースのポリシに安定性を付与し, 環境変化に対処し, 学習柔軟性を向上させるために, CLF(att-CLF)に安定性の注意を払うことを提案する。
また,att-CLFに密に統合した不確実性伝播手法を提案する。
本研究では,従来のCLFとの比較,モデル予測制御,バニラエンドツーエンド学習を,写真実写シミュレータおよび実物大の自律走行車上で実施することで,att-CLFの有効性を実証する。
関連論文リスト
- Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
本研究では,非線形力学モデルと安定化制御器のパラメトリック表現をデータから共同学習する手法として,インヒーレント・リャプノフ安定度制御(CoILS)を提案する。
新たな構成によって保証される学習力学の安定化性に加えて、学習した制御器は学習力学の忠実性に関する特定の仮定の下で真の力学を安定化することを示す。
論文 参考訳(メタデータ) (2023-03-06T14:21:42Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - When Does Contrastive Learning Preserve Adversarial Robustness from
Pretraining to Finetuning? [99.4914671654374]
本稿では,新しい逆比較事前学習フレームワークAdvCLを提案する。
本稿では,AdvCLがモデル精度と微調整効率を損なうことなく,タスク間の堅牢性伝達性を向上できることを示す。
論文 参考訳(メタデータ) (2021-11-01T17:59:43Z) - Robust Stability of Neural-Network Controlled Nonlinear Systems with
Parametric Variability [2.0199917525888895]
ニューラルネットワーク制御非線形システムの安定性と安定化性の理論を考案する。
このような頑健な安定化NNコントローラの計算には、安定性保証トレーニング(SGT)も提案されている。
論文 参考訳(メタデータ) (2021-09-13T05:09:30Z) - Recurrent Neural Network Controllers Synthesis with Stability Guarantees
for Partially Observed Systems [6.234005265019845]
本稿では、不確実な部分観測システムのための動的制御系として、リカレントニューラルネットワーク(RNN)の重要なクラスを考える。
本稿では、再パラメータ化空間における安定性条件を反復的に強制する計画的ポリシー勾配法を提案する。
数値実験により,本手法は,より少ないサンプルを用いて制御器の安定化を学習し,政策勾配よりも高い最終性能を達成することを示す。
論文 参考訳(メタデータ) (2021-09-08T18:21:56Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Actor-Critic Reinforcement Learning for Control with Stability Guarantee [9.400585561458712]
強化学習(RL)と深層学習の統合は、様々なロボット制御タスクにおいて印象的なパフォーマンスを達成した。
しかし、データのみを用いることで、モデルフリーなRLでは安定性は保証されない。
本稿では,古典的なリアプノフ法を制御理論に適用することにより,閉ループ安定性を保証できるアクタクリティカルな制御用RLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:14:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。