論文の概要: A review of ensemble learning and data augmentation models for class
imbalanced problems: combination, implementation and evaluation
- arxiv url: http://arxiv.org/abs/2304.02858v1
- Date: Thu, 6 Apr 2023 04:37:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 15:14:01.504564
- Title: A review of ensemble learning and data augmentation models for class
imbalanced problems: combination, implementation and evaluation
- Title(参考訳): クラス不均衡問題に対するアンサンブル学習とデータ強化モデルの検討:組み合わせ,実装,評価
- Authors: Azal Ahmad Khan, Omkar Chaudhari, Rohitash Chandra
- Abstract要約: 分類問題におけるクラス不均衡 (CI) は、あるクラスに属する観測回数が他のクラスよりも低い場合に生じる。
本稿では、ベンチマークCI問題に対処するために使用されるデータ拡張とアンサンブル学習手法を評価するための計算的レビューを提案する。
- 参考スコア(独自算出の注目度): 0.3670422696827526
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class imbalance (CI) in classification problems arises when the number of
observations belonging to one class is lower than the other classes. Ensemble
learning that combines multiple models to obtain a robust model has been
prominently used with data augmentation methods to address class imbalance
problems. In the last decade, a number of strategies have been added to enhance
ensemble learning and data augmentation methods, along with new methods such as
generative adversarial networks (GANs). A combination of these has been applied
in many studies, but the true rank of different combinations would require a
computational review. In this paper, we present a computational review to
evaluate data augmentation and ensemble learning methods used to address
prominent benchmark CI problems. We propose a general framework that evaluates
10 data augmentation and 10 ensemble learning methods for CI problems. Our
objective was to identify the most effective combination for improving
classification performance on imbalanced datasets. The results indicate that
combinations of data augmentation methods with ensemble learning can
significantly improve classification performance on imbalanced datasets. These
findings have important implications for the development of more effective
approaches for handling imbalanced datasets in machine learning applications.
- Abstract(参考訳): 分類問題におけるクラス不均衡 (CI) は、あるクラスに属する観測回数が他のクラスよりも低い場合に生じる。
複数のモデルを組み合わせてロバストなモデルを得るアンサンブル学習は、クラス不均衡問題に対処するデータ拡張手法で顕著に利用されている。
過去10年間で、生成的敵ネットワーク(GAN)のような新しい手法とともに、アンサンブル学習とデータ拡張手法を強化するための多くの戦略が追加された。
これらの組み合わせは多くの研究に応用されているが、異なる組み合わせの真のランクは計算的レビューを必要とする。
本稿では,データ拡張法とアンサンブル学習法を評価し,ベンチマークci問題を解くための数値的考察を行う。
そこで本研究では,ci問題に対する10データ拡張と10アンサンブル学習法を評価する汎用フレームワークを提案する。
我々の目的は、不均衡データセットの分類性能を改善するための最も効果的な組み合わせを特定することであった。
その結果,データ拡張法とアンサンブル学習の組み合わせにより,不均衡データセットの分類性能が著しく向上することが示唆された。
これらの発見は、機械学習アプリケーションにおける不均衡データセットを扱うためのより効果的なアプローチの開発に重要な意味を持つ。
関連論文リスト
- Ensemble Methods for Sequence Classification with Hidden Markov Models [8.241486511994202]
隠れマルコフモデル(HMM)のためのアンサンブル手法を用いたシーケンス分類への軽量なアプローチを提案する。
HMMは、その単純さ、解釈可能性、効率性のために、不均衡または小さいデータセットを持つシナリオにおいて、大きな利点を提供する。
アンサンブルに基づくスコアリング手法により,任意の長さのシーケンスの比較が可能となり,不均衡なデータセットの性能が向上する。
論文 参考訳(メタデータ) (2024-09-11T20:59:32Z) - Systematic Evaluation of Synthetic Data Augmentation for Multi-class NetFlow Traffic [2.5182419298876857]
マルチクラス分類モデルは特定のタイプの攻撃を識別し、より標的的で効果的なインシデント応答を可能にする。
最近の進歩は、生成モデルがデータの増大を補助し、不均衡なデータセットに対して優れたソリューションを提供すると主張することを示唆している。
本実験は,トレーニングデータのバランスをとる再サンプリング手法が,分類性能を確実に向上させるものではないことを示唆している。
論文 参考訳(メタデータ) (2024-08-28T12:44:07Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Deep Negative Correlation Classification [82.45045814842595]
既存のディープアンサンブル手法は、多くの異なるモデルをナビゲートし、予測を集約する。
深部負相関分類(DNCC)を提案する。
DNCCは、個々の推定器が正確かつ負の相関を持つ深い分類アンサンブルを生成する。
論文 参考訳(メタデータ) (2022-12-14T07:35:20Z) - A Hybrid Approach for Binary Classification of Imbalanced Data [0.0]
本稿では,データブロック構築,次元減少,アンサンブル学習を併用したハイブリットアプローチHADRを提案する。
我々は、8つの不均衡な公開データセットの性能をリコール、G平均、AUCで評価した。
論文 参考訳(メタデータ) (2022-07-06T15:18:41Z) - Federated Learning Aggregation: New Robust Algorithms with Guarantees [63.96013144017572]
エッジでの分散モデルトレーニングのために、フェデレートラーニングが最近提案されている。
本稿では,連合学習フレームワークにおける集約戦略を評価するために,完全な数学的収束解析を提案する。
損失の値に応じてクライアントのコントリビューションを差別化することで、モデルアーキテクチャを変更できる新しい集約アルゴリズムを導出する。
論文 参考訳(メタデータ) (2022-05-22T16:37:53Z) - ASE: Anomaly Scoring Based Ensemble Learning for Imbalanced Datasets [3.214208422566496]
そこで我々は,異常検出スコアリングシステムに基づくバギングアンサンブル学習フレームワークを考案した。
我々のアンサンブル学習モデルは,ベース推定器の性能を劇的に向上させることができる。
論文 参考訳(メタデータ) (2022-03-21T07:20:41Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
既存のクラスインクリメンタルラーニング(CIL)手法は、データラベルに敏感な教師付き分類フレームワークに基づいている。
新しいクラスデータに基づいて更新する場合、それらは破滅的な忘れがちである。
本稿では,SSCILにおける自己指導型表現学習のパフォーマンスを初めて考察する。
論文 参考訳(メタデータ) (2021-11-18T06:58:19Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - Hybrid Ensemble optimized algorithm based on Genetic Programming for
imbalanced data classification [0.0]
本稿では,2種類の不均衡データ分類のための遺伝的プログラミング(GP)に基づくハイブリッドアンサンブルアルゴリズムを提案する。
実験結果から,提案手法をトレーニングセットのサイズで指定したデータセット上での性能は,マイノリティクラス予測の他の次元よりも40%,50%高い精度を示した。
論文 参考訳(メタデータ) (2021-06-02T14:14:38Z) - Long-Tailed Recognition Using Class-Balanced Experts [128.73438243408393]
本稿では,多様な分類器の強度を組み合わせたクラスバランスの専門家のアンサンブルを提案する。
私たちのクラスバランスの専門家のアンサンブルは、最先端に近い結果に到達し、長い尾の認識のための2つのベンチマークで新たな最先端のアンサンブルを確立します。
論文 参考訳(メタデータ) (2020-04-07T20:57:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。