Classification of Heavy-tailed Features in High Dimensions: a
Superstatistical Approach
- URL: http://arxiv.org/abs/2304.02912v3
- Date: Tue, 31 Oct 2023 16:10:03 GMT
- Title: Classification of Heavy-tailed Features in High Dimensions: a
Superstatistical Approach
- Authors: Urte Adomaityte, Gabriele Sicuro, Pierpaolo Vivo
- Abstract summary: We characterise the learning of a mixture of two clouds of data points with generic centroids.
We study the generalisation performance of the obtained estimator, we analyse the role of regularisation, and we analytically the separability transition.
- Score: 1.4469725791865984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We characterise the learning of a mixture of two clouds of data points with
generic centroids via empirical risk minimisation in the high dimensional
regime, under the assumptions of generic convex loss and convex regularisation.
Each cloud of data points is obtained via a double-stochastic process, where
the sample is obtained from a Gaussian distribution whose variance is itself a
random parameter sampled from a scalar distribution $\varrho$. As a result, our
analysis covers a large family of data distributions, including the case of
power-law-tailed distributions with no covariance, and allows us to test recent
"Gaussian universality" claims. We study the generalisation performance of the
obtained estimator, we analyse the role of regularisation, and we analytically
characterise the separability transition.
Related papers
- Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
We investigate the behavior of a general class of regularized convex classifiers in the high-dimensional limit.
Our focus is on the generalization error and variable selection properties of the estimators.
arXiv Detail & Related papers (2024-10-25T19:58:36Z) - Unified Convergence Analysis for Score-Based Diffusion Models with Deterministic Samplers [49.1574468325115]
We introduce a unified convergence analysis framework for deterministic samplers.
Our framework achieves iteration complexity of $tilde O(d2/epsilon)$.
We also provide a detailed analysis of Denoising Implicit Diffusion Models (DDIM)-type samplers.
arXiv Detail & Related papers (2024-10-18T07:37:36Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Distributional Matrix Completion via Nearest Neighbors in the Wasserstein Space [8.971989179518216]
Given a sparsely observed matrix of empirical distributions, we seek to impute the true distributions associated with both observed and unobserved matrix entries.
We utilize tools from optimal transport to generalize the nearest neighbors method to the distributional setting.
arXiv Detail & Related papers (2024-10-17T00:50:17Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
We prove strong identifiability results given unknown single-node interventions without access to the intervention targets.
This is the first instance of causal identifiability from non-paired interventions for deep neural network embeddings.
arXiv Detail & Related papers (2023-06-04T02:32:12Z) - Data thinning for convolution-closed distributions [2.299914829977005]
We propose data thinning, an approach for splitting an observation into two or more independent parts that sum to the original observation.
We show that data thinning can be used to validate the results of unsupervised learning approaches.
arXiv Detail & Related papers (2023-01-18T02:47:41Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions.
We empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model.
arXiv Detail & Related papers (2022-04-20T21:25:21Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Fluctuations, Bias, Variance & Ensemble of Learners: Exact Asymptotics
for Convex Losses in High-Dimension [25.711297863946193]
We develop a theory for the study of fluctuations in an ensemble of generalised linear models trained on different, but correlated, features.
We provide a complete description of the joint distribution of the empirical risk minimiser for generic convex loss and regularisation in the high-dimensional limit.
arXiv Detail & Related papers (2022-01-31T17:44:58Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.