Adaptable and Interpretable Framework for Novelty Detection in Real-Time
IoT Systems
- URL: http://arxiv.org/abs/2304.02947v1
- Date: Thu, 6 Apr 2023 09:16:37 GMT
- Title: Adaptable and Interpretable Framework for Novelty Detection in Real-Time
IoT Systems
- Authors: Marek Wadinger and Michal Kvasnica
- Abstract summary: RAID algorithm adapts to non-stationary effects such as data drift and change points that may not be accounted for during model development.
RAID algorithm does not require changes to existing process automation infrastructures, making it highly deployable across different domains.
- Score: 0.609170287691728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the Real-time Adaptive and Interpretable Detection (RAID)
algorithm. The novel approach addresses the limitations of state-of-the-art
anomaly detection methods for multivariate dynamic processes, which are
restricted to detecting anomalies within the scope of the model training
conditions. The RAID algorithm adapts to non-stationary effects such as data
drift and change points that may not be accounted for during model development,
resulting in prolonged service life. A dynamic model based on joint probability
distribution handles anomalous behavior detection in a system and the root
cause isolation based on adaptive process limits. RAID algorithm does not
require changes to existing process automation infrastructures, making it
highly deployable across different domains. Two case studies involving real
dynamic system data demonstrate the benefits of the RAID algorithm, including
change point adaptation, root cause isolation, and improved detection accuracy.
Related papers
- VARADE: a Variational-based AutoRegressive model for Anomaly Detection on the Edge [7.4646496981460855]
This work presents a novel solution implementing a light autoregressive framework based on variational inference, which is best suited for real-time execution on the edge.
The proposed approach was validated on a robotic arm, part of a pilot production line, and compared with several state-of-the-art algorithms.
arXiv Detail & Related papers (2024-09-23T08:46:15Z) - Change-Point Detection in Industrial Data Streams based on Online Dynamic Mode Decomposition with Control [5.293458740536858]
We propose a novel change-point detection method based on online Dynamic Mode Decomposition with control (ODMDwC)
Our results demonstrate that this method yields intuitive and improved detection results compared to the Singular-Value-Decomposition-based method.
arXiv Detail & Related papers (2024-07-08T14:18:33Z) - Partially-Observable Sequential Change-Point Detection for Autocorrelated Data via Upper Confidence Region [12.645304808491309]
We propose a detection scheme called adaptive upper confidence region with state space model (AUCRSS) for sequential change point detection.
A partially-observable Kalman filter algorithm is developed for online inference of SSM, and accordingly, a change point detection scheme based on a generalized likelihood ratio test is analyzed.
arXiv Detail & Related papers (2024-03-30T02:32:53Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
We propose to validate test-time adaptation methods using datasets for autonomous driving, namely CLAD-C and SHIFT.
We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift.
We enhance the well-established self-training framework by incorporating a small memory buffer to increase model stability.
arXiv Detail & Related papers (2023-09-18T19:34:23Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Real-Time Outlier Detection with Dynamic Process Limits [0.609170287691728]
This paper proposes an online anomaly detection algorithm for existing real-time infrastructures.
Online inverse cumulative distribution-based approach is introduced to eliminate common problems of offline anomaly detectors.
The benefit of the proposed method is the ease of use, fast computation, and deployability as shown in two case studies of real microgrid operation data.
arXiv Detail & Related papers (2023-01-31T10:23:02Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.