論文の概要: ChatGPT for Shaping the Future of Dentistry: The Potential of
Multi-Modal Large Language Model
- arxiv url: http://arxiv.org/abs/2304.03086v2
- Date: Mon, 31 Jul 2023 06:08:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 23:06:29.002004
- Title: ChatGPT for Shaping the Future of Dentistry: The Potential of
Multi-Modal Large Language Model
- Title(参考訳): 歯科医療の未来形成のためのチャットgpt : マルチモーダル大言語モデルの可能性
- Authors: Hanyao Huang, Ou Zheng, Dongdong Wang, Jiayi Yin, Zijin Wang,
Shengxuan Ding, Heng Yin, Chuan Xu, Renjie Yang, Qian Zheng, Bing Shi
- Abstract要約: ChatGPT は OpenAI が開発した GPT-4 (Generative Pretrained Transformer 4) のエレガントで対話的なバリエーションである。
本稿では,歯学におけるLarge Language Models(LLMs)の今後の応用について論じる。
- 参考スコア(独自算出の注目度): 18.59603757924943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ChatGPT, a lite and conversational variant of Generative Pretrained
Transformer 4 (GPT-4) developed by OpenAI, is one of the milestone Large
Language Models (LLMs) with billions of parameters. LLMs have stirred up much
interest among researchers and practitioners in their impressive skills in
natural language processing tasks, which profoundly impact various fields. This
paper mainly discusses the future applications of LLMs in dentistry. We
introduce two primary LLM deployment methods in dentistry, including automated
dental diagnosis and cross-modal dental diagnosis, and examine their potential
applications. Especially, equipped with a cross-modal encoder, a single LLM can
manage multi-source data and conduct advanced natural language reasoning to
perform complex clinical operations. We also present cases to demonstrate the
potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical
application. While LLMs offer significant potential benefits, the challenges,
such as data privacy, data quality, and model bias, need further study.
Overall, LLMs have the potential to revolutionize dental diagnosis and
treatment, which indicates a promising avenue for clinical application and
research in dentistry.
- Abstract(参考訳): ChatGPT(ChatGPT)は、OpenAIが開発したGPT-4(Generative Pretrained Transformer 4)のエレガントで対話的な変種であり、数十億のパラメータを持つLarge Language Models(LLM)の1つである。
LLMは、自然言語処理タスクにおける優れたスキルにおいて、研究者や実践者の間で大きな関心を集めています。
本稿では, 歯科医療におけるLCMの将来的応用について論じる。
歯科医療における2つの主要なLCM展開法について紹介し, 自動歯科診断とクロスモーダル歯科診断を含め, その可能性について検討した。
特に、クロスモーダルエンコーダを備えた単一のLCMは、マルチソースデータを管理し、複雑な臨床手術を行うための高度な自然言語推論を行うことができる。
また, 歯科臨床応用のための完全自動多モードLLMAIシステムの可能性を示す症例も提示した。
LLMは大きな潜在的なメリットを提供するが、データプライバシやデータ品質、モデルバイアスといった課題は、さらなる研究が必要である。
総じて、LSMは歯科診断と治療に革命をもたらす可能性があり、歯科医療における臨床応用と研究の道のりを示す。
関連論文リスト
- Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [12.390859712280328]
大規模言語モデル(LLM)は、テキストベースのシステムからマルチモーダルプラットフォームへと急速に進化してきた。
医療におけるMLLMの現況を考察し,臨床診断支援,医用画像,患者エンゲージメント,研究の分野にまたがる応用を分析した。
論文 参考訳(メタデータ) (2024-09-14T02:35:29Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - A Survey on Large Language Models from General Purpose to Medical Applications: Datasets, Methodologies, and Evaluations [5.265452667976959]
本調査は,オープンソース汎用LSMをベースとした医療用LSMのトレーニング方法を体系的にまとめたものである。
a) トレーニングコーパスの取得方法、カスタマイズされた医療トレーニングセットの構築方法、(b) 適切なトレーニングパラダイムの選択方法、(d) 既存の課題と有望な研究方向性をカバーしている。
論文 参考訳(メタデータ) (2024-06-14T02:42:20Z) - Transforming Dental Diagnostics with Artificial Intelligence: Advanced Integration of ChatGPT and Large Language Models for Patient Care [0.196629787330046]
本研究は,最先端の大規模言語モデル(LLM)が歯科治療に与える影響を考察し,歯科領域に焦点をあてた。
ChatGPT-4の出現は、特に口腔外科の領域において、歯科診療にかなりの進展をもたらす可能性がある。
学術や医療など、様々な分野における幅広い意味と課題を批判的に評価する。
論文 参考訳(メタデータ) (2024-06-07T06:44:09Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
診療所の大規模言語モデル(LLM)をよりよく理解するためのベンチマークであるClimateBenchを構築した。
まず、さまざまな臨床言語の生成、理解、推論タスクを含む11の既存のデータセットを収集します。
次に,現実の実践において複雑だが一般的である6つの新しいデータセットと臨床タスクを構築した。
ゼロショット設定と少数ショット設定の両方で、20個のLDMを広範囲に評価する。
論文 参考訳(メタデータ) (2024-04-25T15:51:06Z) - LLM-Assisted Multi-Teacher Continual Learning for Visual Question Answering in Robotic Surgery [57.358568111574314]
患者のデータのプライバシは、モデル更新時に古いデータの可用性を制限することが多い。
CL研究は外科領域で2つの重要な問題を見落としていた。
本稿では,多モーダル大規模言語モデル (LLM) と適応重み付け手法を用いて,これらの問題に対処することを提案する。
論文 参考訳(メタデータ) (2024-02-26T15:35:24Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
大規模言語モデル(LLM)は、複雑な情報を処理できる汎用モデルとして登場した。
LLMが臨床医とデジタル技術との新たなインターフェースを提供する方法を示す。
自動機械学習を用いた新しい予後ツールを開発した。
論文 参考訳(メタデータ) (2023-10-05T14:18:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。