Investigating Chain-of-thought with ChatGPT for Stance Detection on Social Media
- URL: http://arxiv.org/abs/2304.03087v2
- Date: Thu, 17 Oct 2024 06:35:00 GMT
- Title: Investigating Chain-of-thought with ChatGPT for Stance Detection on Social Media
- Authors: Bowen Zhang, Xianghua Fu, Daijun Ding, Hu Huang, Genan Dai, Nan Yin, Yangyang Li, Liwen Jing,
- Abstract summary: Chain-of-Thought (CoT) approach not requiring backpropagation training has emerged as a promising alternative.
This paper examines CoT's effectiveness in stance detection tasks, demonstrating its superior accuracy and discussing associated challenges.
- Score: 6.980802590994858
- License:
- Abstract: Stance detection predicts attitudes towards targets in texts and has gained attention with the rise of social media. Traditional approaches include conventional machine learning, early deep neural networks, and pre-trained fine-tuning models. However, with the evolution of very large pre-trained language models (VLPLMs) like ChatGPT (GPT-3.5), traditional methods face deployment challenges. The parameter-free Chain-of-Thought (CoT) approach, not requiring backpropagation training, has emerged as a promising alternative. This paper examines CoT's effectiveness in stance detection tasks, demonstrating its superior accuracy and discussing associated challenges.
Related papers
- Hashing it Out: Predicting Unhealthy Conversations on Twitter [0.17175853976270528]
We show that an Attention-based BERT architecture, pre-trained on a large Twitter corpus, is efficient and effective in making such predictions.
This work lays the foundation for a practical tool to encourage better interactions on one of the most ubiquitous social media platforms.
arXiv Detail & Related papers (2023-11-17T15:49:11Z) - Chain-of-Thought Embeddings for Stance Detection on Social Media [3.5128547933798275]
Chain-of-Thought (COT) prompting has recently been shown to improve performance on stance detection tasks.
Our study introduces COT Embeddings which improve COT performance on stance detection tasks.
Our model achieves SOTA performance on multiple stance detection datasets collected from social media.
arXiv Detail & Related papers (2023-10-30T17:18:10Z) - Accurate Neural Network Pruning Requires Rethinking Sparse Optimization [87.90654868505518]
We show the impact of high sparsity on model training using the standard computer vision and natural language processing sparsity benchmarks.
We provide new approaches for mitigating this issue for both sparse pre-training of vision models and sparse fine-tuning of language models.
arXiv Detail & Related papers (2023-08-03T21:49:14Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - How would Stance Detection Techniques Evolve after the Launch of ChatGPT? [5.756359016880821]
A new pre-trained language model chatGPT was launched on Nov 30, 2022.
ChatGPT can achieve SOTA or similar performance for commonly used datasets including SemEval-2016 and P-Stance.
ChatGPT has the potential to be the best AI model for stance detection tasks in NLP.
arXiv Detail & Related papers (2022-12-30T05:03:15Z) - Alleviating Robust Overfitting of Adversarial Training With Consistency
Regularization [9.686724616328874]
Adversarial training (AT) has proven to be one of the most effective ways to defend Deep Neural Networks (DNNs) against adversarial attacks.
robustness will drop sharply at a certain stage, always exists during AT.
consistency regularization, a popular technique in semi-supervised learning, has a similar goal as AT and can be used to alleviate robust overfitting.
arXiv Detail & Related papers (2022-05-24T03:18:43Z) - PACTran: PAC-Bayesian Metrics for Estimating the Transferability of
Pretrained Models to Classification Tasks [22.41824478940036]
PACTran is a theoretically grounded family of metrics for pretrained model selection and transferability measurement.
An analysis of the results shows PACTran is a more consistent and effective transferability measure compared to existing selection methods.
arXiv Detail & Related papers (2022-03-10T02:54:56Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - How Should Pre-Trained Language Models Be Fine-Tuned Towards Adversarial
Robustness? [121.57551065856164]
We propose Robust Informative Fine-Tuning (RIFT) as a novel adversarial fine-tuning method from an information-theoretical perspective.
RIFT encourages an objective model to retain the features learned from the pre-trained model throughout the entire fine-tuning process.
Experimental results show that RIFT consistently outperforms the state-of-the-arts on two popular NLP tasks.
arXiv Detail & Related papers (2021-12-22T05:04:41Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
We propose a neural network-based system to predict human trajectory in crowds.
We learn interpretable rule-based intents, and then utilise the expressibility of neural networks to model scene-specific residual.
Our architecture is tested on the interaction-centric benchmark TrajNet++.
arXiv Detail & Related papers (2021-05-07T09:22:34Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.