論文の概要: Continual Detection Transformer for Incremental Object Detection
- arxiv url: http://arxiv.org/abs/2304.03110v1
- Date: Thu, 6 Apr 2023 14:38:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 14:01:47.695409
- Title: Continual Detection Transformer for Incremental Object Detection
- Title(参考訳): インクリメンタルオブジェクト検出用連続検出変換器
- Authors: Yaoyao Liu, Bernt Schiele, Andrea Vedaldi, Christian Rupprecht
- Abstract要約: インクリメンタルオブジェクト検出(IOD)は、新しいオブジェクトカテゴリに対するアノテーションを備えた、フェーズ内のオブジェクト検出をトレーニングすることを目的としている。
他の段階的な設定として、IODは破滅的な忘れがちであり、知識蒸留(KD)や模範再生(ER)といった技術によってしばしば対処される。
本稿では,この文脈でKDとERを効果的に活用できるトランスフォーマーベースのIODを提案する。
- 参考スコア(独自算出の注目度): 154.8345288298059
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Incremental object detection (IOD) aims to train an object detector in
phases, each with annotations for new object categories. As other incremental
settings, IOD is subject to catastrophic forgetting, which is often addressed
by techniques such as knowledge distillation (KD) and exemplar replay (ER).
However, KD and ER do not work well if applied directly to state-of-the-art
transformer-based object detectors such as Deformable DETR and UP-DETR. In this
paper, we solve these issues by proposing a ContinuaL DEtection TRansformer
(CL-DETR), a new method for transformer-based IOD which enables effective usage
of KD and ER in this context. First, we introduce a Detector Knowledge
Distillation (DKD) loss, focusing on the most informative and reliable
predictions from old versions of the model, ignoring redundant background
predictions, and ensuring compatibility with the available ground-truth labels.
We also improve ER by proposing a calibration strategy to preserve the label
distribution of the training set, therefore better matching training and
testing statistics. We conduct extensive experiments on COCO 2017 and
demonstrate that CL-DETR achieves state-of-the-art results in the IOD setting.
- Abstract(参考訳): インクリメンタルオブジェクト検出(IOD)は、新しいオブジェクトカテゴリに対するアノテーションを備えた、フェーズ内のオブジェクト検出をトレーニングすることを目的としている。
他の段階的な設定として、IODは破滅的な忘れがちであり、知識蒸留(KD)や模範再生(ER)といった技術によってしばしば扱われる。
しかし、KDとERはDeformable DETRやUP-DETRといった最先端のトランスフォーマーベースのオブジェクト検出器に直接適用してもうまく動作しない。
本稿では,この文脈でKDとERを効果的に活用するトランスフォーマベースIODの新しい手法であるContinualaL DEtection TRansformer (CL-DETR)を提案する。
まず,検出者知識蒸留(DKD)の損失を導入し,モデルの古いバージョンからの最も情報的で信頼性の高い予測,冗長な背景予測の無視,利用可能な接地木ラベルとの互換性を確保する。
また,トレーニングセットのラベル分布を保存するためのキャリブレーション戦略を提案することで,erの改善も行う。
coco 2017 の広範な実験を行い,cl-detr が iod 設定で最先端の結果を得ることを示す。
関連論文リスト
- On Calibration of Object Detectors: Pitfalls, Evaluation and Baselines [15.306933156466522]
オブジェクト検出器の信頼性の高い使用には、それらを校正する必要がある。
最近のアプローチでは、スクラッチからそれらを訓練して校正された検出器を得るために、新しい損失関数を設計する。
対象検出器の校正と精度を共同で測定する原理的評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-30T20:12:14Z) - Unified Unsupervised Salient Object Detection via Knowledge Transfer [29.324193170890542]
非教師なしサルエントオブジェクト検出(USOD)は、アノテーションのない性質のために注目を集めている。
本稿では,汎用USODタスクのための統一USODフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-23T05:50:02Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
半教師付きオープンワールド検出(SS-OWOD)という,より現実的な定式化を導入する。
提案したSS-OWOD設定では,最先端OWOD検出器の性能が劇的に低下することが実証された。
我々は,MS COCO, PASCAL, Objects365, DOTAの4つのデータセットを用いた実験を行い, 提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-02-25T07:12:51Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
本稿では,Deformable-DETR,UP-DETR,DINOのキャリブレーション検出トランス(Cal-DETR)のメカニズムを提案する。
我々は、不確実性を利用してクラスロジットを変調する不確実性誘導ロジット変調機構を開発する。
その結果、Cal-DETRは、ドメイン内およびドメイン外の両方を校正する競合する列車時間法に対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-06T22:13:10Z) - Towards Few-Annotation Learning for Object Detection: Are
Transformer-based Models More Efficient ? [11.416621957617334]
本稿では,現在最先端のオブジェクト検出器であるDeformable DETRに適した半教師付き手法を提案する。
本手法はCOCOとPascal VOCの半教師付きオブジェクト検出ベンチマークで評価し,特にアノテーションが少ない場合,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-30T18:51:25Z) - Rank-DETR for High Quality Object Detection [52.82810762221516]
高性能なオブジェクト検出器は、バウンディングボックス予測の正確なランキングを必要とする。
本研究では, 簡易かつ高性能なDETR型物体検出器について, 一連のランク指向設計を提案して紹介する。
論文 参考訳(メタデータ) (2023-10-13T04:48:32Z) - Revisiting Intermediate Layer Distillation for Compressing Language
Models: An Overfitting Perspective [7.481220126953329]
中間層蒸留(ILD)は事実上の標準KD法であり,NLPフィールドの性能向上に寄与している。
本稿では,既存のILD手法はトレーニングデータセットに過度に適合する傾向があるが,これらの手法は元のKDよりも多くの情報を伝達する。
我々は,学生モデルがトレーニングデータセットを過度に適合させるのを防ぐ,シンプルで効果的な一貫性規則化IDDを提案する。
論文 参考訳(メタデータ) (2023-02-03T04:09:22Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
擬似ラベルの修正機構を導入し,相互誤りの増幅を緩和するクロス・インストラクション(CT)手法を提案する。
他の検出器からの予測を直接擬似ラベルとして扱う既存の相互指導法とは対照的に,我々はラベル修正モジュール(LRM)を提案する。
論文 参考訳(メタデータ) (2022-01-26T03:34:57Z) - DA-DETR: Domain Adaptive Detection Transformer with Information Fusion [53.25930448542148]
DA-DETRは、ラベル付きソースドメインからラベルなしターゲットドメインへの効果的な転送のための情報融合を導入するドメイン適応型オブジェクト検出変換器である。
本稿では,CNN機能とトランスフォーマー機能を融合した新しいCNN-Transformer Blender(CTBlender)を提案する。
CTBlenderはTransformer機能を使用して、高レベルの意味情報と低レベルの空間情報が融合した複数のスケールでCNN機能を変調し、正確な物体識別と位置決めを行う。
論文 参考訳(メタデータ) (2021-03-31T13:55:56Z) - Distilling Knowledge from Refinement in Multiple Instance Detection
Networks [0.0]
弱教師付きオブジェクト検出(WSOD)は、ラベル付き画像カテゴリのみを監督として、オブジェクト検出の問題に取り組むことを目的としている。
そこで本研究では,各改良モジュールの監督期間中に,基幹クラス,背景,あるいは無視されるボックスの選択基準を動的に変更する適応型監視アグリゲーション機能を提案する。
論文 参考訳(メタデータ) (2020-04-23T02:49:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。