SLM: End-to-end Feature Selection via Sparse Learnable Masks
- URL: http://arxiv.org/abs/2304.03202v1
- Date: Thu, 6 Apr 2023 16:25:43 GMT
- Title: SLM: End-to-end Feature Selection via Sparse Learnable Masks
- Authors: Yihe Dong, Sercan O. Arik
- Abstract summary: We propose a canonical approach for end-to-end feature selection that scales well with respect to both the feature dimension and the number of samples.
At the heart of SLM lies a simple but effective learnable sparse mask, which learns which features to select.
We derive a scaling mechanism that allows SLM to precisely control the number of features selected.
- Score: 12.081877372552606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection has been widely used to alleviate compute requirements
during training, elucidate model interpretability, and improve model
generalizability. We propose SLM -- Sparse Learnable Masks -- a canonical
approach for end-to-end feature selection that scales well with respect to both
the feature dimension and the number of samples. At the heart of SLM lies a
simple but effective learnable sparse mask, which learns which features to
select, and gives rise to a novel objective that provably maximizes the mutual
information (MI) between the selected features and the labels, which can be
derived from a quadratic relaxation of mutual information from first
principles. In addition, we derive a scaling mechanism that allows SLM to
precisely control the number of features selected, through a novel use of
sparsemax. This allows for more effective learning as demonstrated in ablation
studies. Empirically, SLM achieves state-of-the-art results against a variety
of competitive baselines on eight benchmark datasets, often by a significant
margin, especially on those with real-world challenges such as class imbalance.
Related papers
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.
LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.
Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
Large language models (LLMs) are increasingly embedded in everyday applications.
Ensuring their alignment with the diverse preferences of individual users has become a critical challenge.
We present a novel framework for few-shot steerable alignment.
arXiv Detail & Related papers (2024-12-18T16:14:59Z) - Bridge the Points: Graph-based Few-shot Segment Anything Semantically [79.1519244940518]
Recent advancements in pre-training techniques have enhanced the capabilities of vision foundation models.
Recent studies extend the SAM to Few-shot Semantic segmentation (FSS)
We propose a simple yet effective approach based on graph analysis.
arXiv Detail & Related papers (2024-10-09T15:02:28Z) - Exploring Large Language Models for Feature Selection: A Data-centric Perspective [17.99621520553622]
Large Language Models (LLMs) have influenced various domains, leveraging their exceptional few-shot and zero-shot learning capabilities.
We aim to explore and understand the LLMs-based feature selection methods from a data-centric perspective.
Our findings emphasize the effectiveness and robustness of text-based feature selection methods and showcase their potentials using a real-world medical application.
arXiv Detail & Related papers (2024-08-21T22:35:19Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning [35.03338699349037]
We propose a novel in-context learning framework, FeatLLM, which employs Large Language Models as feature engineers.
FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
arXiv Detail & Related papers (2024-04-15T06:26:08Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Learning to Maximize Mutual Information for Dynamic Feature Selection [13.821253491768168]
We consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information.
We explore a simpler approach of greedily selecting features based on their conditional mutual information.
The proposed method is shown to recover the greedy policy when trained to optimality, and it outperforms numerous existing feature selection methods in our experiments.
arXiv Detail & Related papers (2023-01-02T08:31:56Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDP is a simple and scalable self-supervised pretraining method for reinforcement learning and behavioral cloning.
We find that a MaskDP model gains the capability of zero-shot transfer to new BC tasks, such as single and multiple goal reaching.
arXiv Detail & Related papers (2022-11-23T07:04:41Z) - Feature Selection Using Batch-Wise Attenuation and Feature Mask
Normalization [6.6357750579293935]
This paper proposes a feature mask module (FM- module) for feature selection based on a novel batch-wise attenuation and feature mask normalization.
Experiments on popular image, text and speech datasets have shown that our approach is easy to use and has superior performance in comparison with other state-of-the-art deep-learning-based feature selection methods.
arXiv Detail & Related papers (2020-10-26T14:46:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.