Data AUDIT: Identifying Attribute Utility- and Detectability-Induced
Bias in Task Models
- URL: http://arxiv.org/abs/2304.03218v1
- Date: Thu, 6 Apr 2023 16:50:15 GMT
- Title: Data AUDIT: Identifying Attribute Utility- and Detectability-Induced
Bias in Task Models
- Authors: Mitchell Pavlak, Nathan Drenkow, Nicholas Petrick, Mohammad Mehdi
Farhangi, Mathias Unberath
- Abstract summary: We present a first technique for the rigorous, quantitative screening of medical image datasets.
Our method decomposes the risks associated with dataset attributes in terms of their detectability and utility.
Using our method, we show our screening method reliably identifies nearly imperceptible bias-inducing artifacts.
- Score: 8.420252576694583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To safely deploy deep learning-based computer vision models for
computer-aided detection and diagnosis, we must ensure that they are robust and
reliable. Towards that goal, algorithmic auditing has received substantial
attention. To guide their audit procedures, existing methods rely on heuristic
approaches or high-level objectives (e.g., non-discrimination in regards to
protected attributes, such as sex, gender, or race). However, algorithms may
show bias with respect to various attributes beyond the more obvious ones, and
integrity issues related to these more subtle attributes can have serious
consequences. To enable the generation of actionable, data-driven hypotheses
which identify specific dataset attributes likely to induce model bias, we
contribute a first technique for the rigorous, quantitative screening of
medical image datasets. Drawing from literature in the causal inference and
information theory domains, our procedure decomposes the risks associated with
dataset attributes in terms of their detectability and utility (defined as the
amount of information knowing the attribute gives about a task label). To
demonstrate the effectiveness and sensitivity of our method, we develop a
variety of datasets with synthetically inserted artifacts with different
degrees of association to the target label that allow evaluation of inherited
model biases via comparison of performance against true counterfactual
examples. Using these datasets and results from hundreds of trained models, we
show our screening method reliably identifies nearly imperceptible
bias-inducing artifacts. Lastly, we apply our method to the natural attributes
of a popular skin-lesion dataset and demonstrate its success. Our approach
provides a means to perform more systematic algorithmic audits and guide future
data collection efforts in pursuit of safer and more reliable models.
Related papers
- Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
New personalization techniques have been proposed to customize the pre-trained base models for crafting images with specific themes or styles.
Such a lightweight solution poses a new concern regarding whether the personalized models are trained from unauthorized data.
We introduce SIREN, a novel methodology to proactively trace unauthorized data usage in black-box personalized text-to-image diffusion models.
arXiv Detail & Related papers (2024-10-14T12:29:23Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
We first contribute a dedicated dataset called the Fair Forgery Detection (FairFD) dataset, where we prove the racial bias of public state-of-the-art (SOTA) methods.
We design novel metrics including Approach Averaged Metric and Utility Regularized Metric, which can avoid deceptive results.
We also present an effective and robust post-processing technique, Bias Pruning with Fair Activations (BPFA), which improves fairness without requiring retraining or weight updates.
arXiv Detail & Related papers (2024-07-19T14:53:18Z) - Data Valuation with Gradient Similarity [1.997283751398032]
Data Valuation algorithms quantify the value of each sample in a dataset based on its contribution or importance to a given predictive task.
We present a simple alternative to existing methods, termed Data Valuation with Gradient Similarity (DVGS)
Our approach has the ability to rapidly and accurately identify low-quality data, which can reduce the need for expert knowledge and manual intervention in data cleaning tasks.
arXiv Detail & Related papers (2024-05-13T22:10:00Z) - Automated Deception Detection from Videos: Using End-to-End Learning
Based High-Level Features and Classification Approaches [0.0]
We propose a multimodal approach combining deep learning and discriminative models for deception detection.
We employ convolutional end-to-end learning to analyze gaze, head pose, and facial expressions.
Our approach is evaluated on five datasets, including a new Rolling-Dice Experiment motivated by economic factors.
arXiv Detail & Related papers (2023-07-13T08:45:15Z) - Simultaneous Improvement of ML Model Fairness and Performance by
Identifying Bias in Data [1.76179873429447]
We propose a data preprocessing technique that can detect instances ascribing a specific kind of bias that should be removed from the dataset before training.
In particular, we claim that in the problem settings where instances exist with similar feature but different labels caused by variation in protected attributes, an inherent bias gets induced in the dataset.
arXiv Detail & Related papers (2022-10-24T13:04:07Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.