Unsupervised Model Diagnosis
- URL: http://arxiv.org/abs/2410.06243v1
- Date: Tue, 8 Oct 2024 17:59:03 GMT
- Title: Unsupervised Model Diagnosis
- Authors: Yinong Oliver Wang, Eileen Li, Jinqi Luo, Zhaoning Wang, Fernando De la Torre,
- Abstract summary: This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
- Score: 49.36194740479798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring model explainability and robustness is essential for reliable deployment of deep vision systems. Current methods for evaluating robustness rely on collecting and annotating extensive test sets. While this is common practice, the process is labor-intensive and expensive with no guarantee of sufficient coverage across attributes of interest. Recently, model diagnosis frameworks have emerged leveraging user inputs (e.g., text) to assess the vulnerability of the model. However, such dependence on human can introduce bias and limitation given the domain knowledge of particular users. This paper proposes Unsupervised Model Diagnosis (UMO), that leverages generative models to produce semantic counterfactual explanations without any user guidance. Given a differentiable computer vision model (i.e., the target model), UMO optimizes for the most counterfactual directions in a generative latent space. Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources, such as dictionaries or language models. We validate the framework on multiple vision tasks (e.g., classification, segmentation, keypoint detection). Extensive experiments show that our unsupervised discovery of semantic directions can correctly highlight spurious correlations and visualize the failure mode of target models without any human intervention.
Related papers
- DISCO: DISCovering Overfittings as Causal Rules for Text Classification Models [6.369258625916601]
Post-hoc interpretability methods fail to capture the models' decision-making process fully.
Our paper introduces DISCO, a novel method for discovering global, rule-based explanations.
DISCO supports interactive explanations, enabling human inspectors to distinguish spurious causes in the rule-based output.
arXiv Detail & Related papers (2024-11-07T12:12:44Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series [17.08674819906415]
We introduce HILAD, a novel framework designed to foster a dynamic and bidirectional collaboration between humans and AI.
Through our visual interface, HILAD empowers domain experts to detect, interpret, and correct unexpected model behaviors at scale.
arXiv Detail & Related papers (2024-05-06T07:44:07Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
Data slice finding is an emerging technique for validating machine learning (ML) models by identifying and analyzing subgroups in a dataset that exhibit poor performance.
This approach faces significant challenges, including the laborious and costly requirement for additional metadata.
We introduce AttributionScanner, an innovative human-in-the-loop Visual Analytics (VA) system, designed for metadata-free data slice finding.
Our system identifies interpretable data slices that involve common model behaviors and visualizes these patterns through an Attribution Mosaic design.
arXiv Detail & Related papers (2024-01-12T09:17:32Z) - ProtoVAE: Prototypical Networks for Unsupervised Disentanglement [1.6114012813668934]
We introduce a novel deep generative VAE-based model, ProtoVAE, that leverages a deep metric learning Prototypical network trained using self-supervision.
Our model is completely unsupervised and requires no priori knowledge of the dataset, including the number of factors.
We evaluate our proposed model on the benchmark dSprites, 3DShapes, and MPI3D disentanglement datasets.
arXiv Detail & Related papers (2023-05-16T01:29:26Z) - Zero-shot Model Diagnosis [80.36063332820568]
A common approach to evaluate deep learning models is to build a labeled test set with attributes of interest and assess how well it performs.
This paper argues the case that Zero-shot Model Diagnosis (ZOOM) is possible without the need for a test set nor labeling.
arXiv Detail & Related papers (2023-03-27T17:59:33Z) - Diagnosing and Rectifying Vision Models using Language [31.588965563961573]
Recent contrastive learning models have demonstrated the ability to learn an embedding space suitable for building strong vision classifiers.
Our work highlights a distinct advantage of this multi-modal embedding space: the ability to diagnose vision classifiers through natural language.
Our proposed method can discover high-error data slices, identify influential attributes and further rectify undesirable model behaviors.
arXiv Detail & Related papers (2023-02-08T18:59:42Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.