Better "CMOS" Produces Clearer Images: Learning Space-Variant Blur
Estimation for Blind Image Super-Resolution
- URL: http://arxiv.org/abs/2304.03542v1
- Date: Fri, 7 Apr 2023 08:40:31 GMT
- Title: Better "CMOS" Produces Clearer Images: Learning Space-Variant Blur
Estimation for Blind Image Super-Resolution
- Authors: Xuhai Chen, Jiangning Zhang, Chao Xu, Yabiao Wang, Chengjie Wang, Yong
Liu
- Abstract summary: We introduce two new datasets with out-of-focus blur, i.e., NYUv2-BSR and Cityscapes-BSR, to support further researches of blind SR with space-variant blur.
Based on the datasets, we design a novel Cross-MOdal fuSion network (CMOS) that estimate both blur and semantics simultaneously.
- Score: 30.816546273417774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the existing blind image Super-Resolution (SR) methods assume that
the blur kernels are space-invariant. However, the blur involved in real
applications are usually space-variant due to object motion, out-of-focus,
etc., resulting in severe performance drop of the advanced SR methods. To
address this problem, we firstly introduce two new datasets with out-of-focus
blur, i.e., NYUv2-BSR and Cityscapes-BSR, to support further researches of
blind SR with space-variant blur. Based on the datasets, we design a novel
Cross-MOdal fuSion network (CMOS) that estimate both blur and semantics
simultaneously, which leads to improved SR results. It involves a feature
Grouping Interactive Attention (GIA) module to make the two modalities interact
more effectively and avoid inconsistency. GIA can also be used for the
interaction of other features because of the universality of its structure.
Qualitative and quantitative experiments compared with state-of-the-art methods
on above datasets and real-world images demonstrate the superiority of our
method, e.g., obtaining PSNR/SSIM by +1.91/+0.0048 on NYUv2-BSR than MANet.
Related papers
- A New Dataset and Framework for Real-World Blurred Images Super-Resolution [9.122275433854062]
We develop a new super-resolution dataset specifically tailored for blur images, named the Real-world Blur-kept Super-Resolution (ReBlurSR) dataset.
We propose Perceptual-Blur-adaptive Super-Resolution (PBaSR), which comprises two main modules: the Cross Disentanglement Module (CDM) and the Cross Fusion Module (CFM)
By integrating these two modules, PBaSR achieves commendable performance on both general and blur data without any additional inference and deployment cost.
arXiv Detail & Related papers (2024-07-20T14:07:03Z) - Towards Self-Supervised FG-SBIR with Unified Sample Feature Alignment and Multi-Scale Token Recycling [11.129453244307369]
FG-SBIR aims to minimize the distance between sketches and corresponding images in the embedding space.
We propose an effective approach to narrow the gap between the two domains.
It mainly facilitates unified mutual information sharing both intra- and inter-samples.
arXiv Detail & Related papers (2024-06-17T13:49:12Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Dual-Camera Super-Resolution with Aligned Attention Modules [56.54073689003269]
We present a novel approach to reference-based super-resolution (RefSR) with the focus on dual-camera super-resolution (DCSR)
Our proposed method generalizes the standard patch-based feature matching with spatial alignment operations.
To bridge the domain gaps between real-world images and the training images, we propose a self-supervised domain adaptation strategy.
arXiv Detail & Related papers (2021-09-03T07:17:31Z) - Mutual Affine Network for Spatially Variant Kernel Estimation in Blind
Image Super-Resolution [130.32026819172256]
Existing blind image super-resolution (SR) methods mostly assume blur kernels are spatially invariant across the whole image.
This paper proposes a mutual affine network (MANet) for spatially variant kernel estimation.
arXiv Detail & Related papers (2021-08-11T16:11:17Z) - Robust Reference-based Super-Resolution via C2-Matching [77.51610726936657]
Super-Resolution (Ref-SR) has recently emerged as a promising paradigm to enhance a low-resolution (LR) input image by introducing an additional high-resolution (HR) reference image.
Existing Ref-SR methods mostly rely on implicit correspondence matching to borrow HR textures from reference images to compensate for the information loss in input images.
We propose C2-Matching, which produces explicit robust matching crossing transformation and resolution.
arXiv Detail & Related papers (2021-06-03T16:40:36Z) - Joint Generative Learning and Super-Resolution For Real-World
Camera-Screen Degradation [6.14297871633911]
In real-world single image super-resolution (SISR) task, the low-resolution image suffers more complicated degradations.
In this paper, we focus on the camera-screen degradation and build a real-world dataset (Cam-ScreenSR)
We propose a joint two-stage model. Firstly, the downsampling degradation GAN(DD-GAN) is trained to model the degradation and produces more various of LR images.
Then the dual residual channel attention network (DuRCAN) learns to recover the SR image.
arXiv Detail & Related papers (2020-08-01T07:10:13Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
Real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image.
In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR.
Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair.
arXiv Detail & Related papers (2020-02-25T18:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.