Joint Generative Learning and Super-Resolution For Real-World
Camera-Screen Degradation
- URL: http://arxiv.org/abs/2008.00195v3
- Date: Mon, 14 Sep 2020 09:22:34 GMT
- Title: Joint Generative Learning and Super-Resolution For Real-World
Camera-Screen Degradation
- Authors: Guanghao Yin, Shouqian Sun, Chao Li, Xin Min
- Abstract summary: In real-world single image super-resolution (SISR) task, the low-resolution image suffers more complicated degradations.
In this paper, we focus on the camera-screen degradation and build a real-world dataset (Cam-ScreenSR)
We propose a joint two-stage model. Firstly, the downsampling degradation GAN(DD-GAN) is trained to model the degradation and produces more various of LR images.
Then the dual residual channel attention network (DuRCAN) learns to recover the SR image.
- Score: 6.14297871633911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world single image super-resolution (SISR) task, the low-resolution
image suffers more complicated degradations, not only downsampled by unknown
kernels. However, existing SISR methods are generally studied with the
synthetic low-resolution generation such as bicubic interpolation (BI), which
greatly limits their performance. Recently, some researchers investigate
real-world SISR from the perspective of the camera and smartphone. However,
except the acquisition equipment, the display device also involves more
complicated degradations. In this paper, we focus on the camera-screen
degradation and build a real-world dataset (Cam-ScreenSR), where HR images are
original ground truths from the previous DIV2K dataset and corresponding LR
images are camera-captured versions of HRs displayed on the screen. We conduct
extensive experiments to demonstrate that involving more real degradations is
positive to improve the generalization of SISR models. Moreover, we propose a
joint two-stage model. Firstly, the downsampling degradation GAN(DD-GAN) is
trained to model the degradation and produces more various of LR images, which
is validated to be efficient for data augmentation. Then the dual residual
channel attention network (DuRCAN) learns to recover the SR image. The weighted
combination of L1 loss and proposed Laplacian loss are applied to sharpen the
high-frequency edges. Extensive experimental results in both typical synthetic
and complicated real-world degradations validate the proposed method
outperforms than existing SOTA models with less parameters, faster speed and
better visual results. Moreover, in real captured photographs, our model also
delivers best visual quality with sharper edge, less artifacts, especially
appropriate color enhancement, which has not been accomplished by previous
methods.
Related papers
- Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGen is an unsupervised learning data generation framework designed for real-world super-resolution.
We develop content and degradation extraction strategies, which are integrated into a novel content-degradation decoupled diffusion model.
Experiments demonstrate that RealDGen excels in generating large-scale, high-quality paired data that mirrors real-world degradations.
arXiv Detail & Related papers (2024-06-11T13:34:57Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
Image super-resolution (SR) aims to learn a mapping from low-resolution (LR) to high-resolution (HR) using paired HR-LR training images.
We present an efficient test-time adaptation framework for SR, named SRTTA, which is able to quickly adapt SR models to test domains with different/unknown degradation types.
arXiv Detail & Related papers (2023-10-29T13:58:57Z) - Learning Many-to-Many Mapping for Unpaired Real-World Image
Super-resolution and Downscaling [60.80788144261183]
We propose an image downscaling and SR model dubbed as SDFlow, which simultaneously learns a bidirectional many-to-many mapping between real-world LR and HR images unsupervisedly.
Experimental results on real-world image SR datasets indicate that SDFlow can generate diverse realistic LR and SR images both quantitatively and qualitatively.
arXiv Detail & Related papers (2023-10-08T01:48:34Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Toward Real-world Image Super-resolution via Hardware-based Adaptive
Degradation Models [3.9037347042028254]
Most single image super-resolution (SR) methods are developed on synthetic low-resolution (LR) and high-resolution (HR) image pairs.
We propose a novel supervised method to simulate an unknown degradation process with the inclusion of prior hardware knowledge.
Experiments on the real-world datasets validate that our degradation model can estimate LR images more accurately than the predetermined degradation operation.
arXiv Detail & Related papers (2021-10-20T19:53:48Z) - Benefiting from Bicubically Down-Sampled Images for Learning Real-World
Image Super-Resolution [22.339751911637077]
We propose to handle real-world SR by splitting this ill-posed problem into two comparatively more well-posed steps.
First, we train a network to transform real LR images to the space of bicubically downsampled images in a supervised manner.
Second, we take a generic SR network trained on bicubically downsampled images to super-resolve the transformed LR image.
arXiv Detail & Related papers (2020-07-06T20:27:58Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
Real image super-resolution(Real-SR) focus on the relationship between real-world high-resolution(HR) and low-resolution(LR) image.
In this article, we propose a Dual-path Dynamic Enhancement Network(DDet) for Real-SR.
Unlike conventional methods which stack up massive convolutional blocks for feature representation, we introduce a content-aware framework to study non-inherently aligned image pair.
arXiv Detail & Related papers (2020-02-25T18:24:51Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.