Efficient Secure Aggregation for Privacy-Preserving Federated Machine Learning
- URL: http://arxiv.org/abs/2304.03841v6
- Date: Fri, 08 Nov 2024 20:12:48 GMT
- Title: Efficient Secure Aggregation for Privacy-Preserving Federated Machine Learning
- Authors: Rouzbeh Behnia, Arman Riasi, Reza Ebrahimi, Sherman S. M. Chow, Balaji Padmanabhan, Thang Hoang,
- Abstract summary: e-SeaFL is an efficient verifiable secure aggregation protocol taking only one communication round during the aggregation phase.
e-SeaFL allows the aggregation server to generate proof of honest aggregation to participants via authenticated homomorphic vector commitments.
- Score: 11.470324568544552
- License:
- Abstract: Secure aggregation protocols ensure the privacy of users' data in federated learning by preventing the disclosure of local gradients. Many existing protocols impose significant communication and computational burdens on participants and may not efficiently handle the large update vectors typical of machine learning models. Correspondingly, we present e-SeaFL, an efficient verifiable secure aggregation protocol taking only one communication round during the aggregation phase. e-SeaFL allows the aggregation server to generate proof of honest aggregation to participants via authenticated homomorphic vector commitments. Our core idea is the use of assisting nodes to help the aggregation server, under similar trust assumptions existing works place upon the participating users. Our experiments show that the user enjoys an order of magnitude efficiency improvement over the state-of-the-art (IEEE S\&P 2023) for large gradient vectors with thousands of parameters. Our open-source implementation is available at https://github.com/vt-asaplab/e-SeaFL.
Related papers
- DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing [51.336015600778396]
Federated Learning (FL) has gained lots of traction recently, both in industry and academia.
In FL, a machine learning model is trained using data from various end-users arranged in committees across several rounds.
Since such data can often be sensitive, a primary challenge in FL is providing privacy while still retaining utility of the model.
arXiv Detail & Related papers (2024-10-21T16:25:14Z) - Secure Stateful Aggregation: A Practical Protocol with Applications in Differentially-Private Federated Learning [36.42916779389165]
DP-FTRL based approaches have already seen widespread deployment in industry.
We introduce secure stateful aggregation: a simple append-only data structure that allows for the private storage of aggregate values.
We observe that secure stateful aggregation suffices for realizing DP-FTRL-based private federated learning.
arXiv Detail & Related papers (2024-10-15T07:45:18Z) - ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning (FL) is a distributed learning framework designed for privacy-aware applications.
Traditional FL approaches risk exposing sensitive client data when plain model updates are transmitted to the server.
Google's Secure Aggregation (SecAgg) protocol addresses this threat by employing a double-masking technique.
We propose ACCESS-FL, a communication-and-computation-efficient secure aggregation method.
arXiv Detail & Related papers (2024-09-03T09:03:38Z) - Boosting Communication Efficiency of Federated Learning's Secure Aggregation [22.943966056320424]
Federated Learning (FL) is a decentralized machine learning approach where client devices train models locally and send them to a server.
FL is vulnerable to model inversion attacks, where the server can infer sensitive client data from trained models.
Google's Secure Aggregation (SecAgg) protocol addresses this data privacy issue by masking each client's trained model.
This poster introduces a Communication-Efficient Secure Aggregation (CESA) protocol that substantially reduces this overhead.
arXiv Detail & Related papers (2024-05-02T10:00:16Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
Clustered learning has been shown to produce promising results by grouping clients into clusters.
Existing FL algorithms are essentially trying to group clients together with similar distributions.
Prior FL algorithms attempt similarities indirectly during training.
arXiv Detail & Related papers (2022-09-21T17:37:54Z) - BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine
Learning [0.0]
We present BEAS, the first blockchain-based framework for N-party Federated Learning.
It provides strict privacy guarantees of training data using gradient pruning.
Anomaly detection protocols are used to minimize the risk of data-poisoning attacks.
We also define a novel protocol to prevent premature convergence in heterogeneous learning environments.
arXiv Detail & Related papers (2022-02-06T17:11:14Z) - Sparsified Secure Aggregation for Privacy-Preserving Federated Learning [1.2891210250935146]
We propose a lightweight gradient sparsification framework for secure aggregation.
Our theoretical analysis demonstrates that the proposed framework can significantly reduce the communication overhead of secure aggregation.
Our experiments demonstrate that our framework reduces the communication overhead by up to 7.8x, while also speeding up the wall clock training time by 1.13x, when compared to conventional secure aggregation benchmarks.
arXiv Detail & Related papers (2021-12-23T22:44:21Z) - Federated Learning of User Authentication Models [69.93965074814292]
We propose Federated User Authentication (FedUA), a framework for privacy-preserving training of machine learning models.
FedUA adopts federated learning framework to enable a group of users to jointly train a model without sharing the raw inputs.
We show our method is privacy-preserving, scalable with number of users, and allows new users to be added to training without changing the output layer.
arXiv Detail & Related papers (2020-07-09T08:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.