The Short Text Matching Model Enhanced with Knowledge via Contrastive
Learning
- URL: http://arxiv.org/abs/2304.03898v3
- Date: Wed, 20 Dec 2023 02:43:39 GMT
- Title: The Short Text Matching Model Enhanced with Knowledge via Contrastive
Learning
- Authors: Ruiqiang Liu, Qiqiang Zhong, Mengmeng Cui, Hanjie Mai, Qiang Zhang,
Shaohua Xu, Xiangzheng Liu, Yanlong Du
- Abstract summary: This paper proposes a short Text Matching model that combines contrastive learning and external knowledge.
To avoid noise, we use keywords as the main semantics of the original sentence to retrieve corresponding knowledge words in the knowledge base.
Our designed model achieves state-of-the-art performance on two publicly available Chinese Text Matching datasets.
- Score: 8.350445155753167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, short Text Matching tasks have been widely applied in the
fields ofadvertising search and recommendation. The difficulty lies in the lack
of semantic information and word ambiguity caused by the short length of the
text. Previous works have introduced complement sentences or knowledge bases to
provide additional feature information. However, these methods have not fully
interacted between the original sentence and the complement sentence, and have
not considered the noise issue that may arise from the introduction of external
knowledge bases. Therefore, this paper proposes a short Text Matching model
that combines contrastive learning and external knowledge. The model uses a
generative model to generate corresponding complement sentences and uses the
contrastive learning method to guide the model to obtain more semantically
meaningful encoding of the original sentence. In addition, to avoid noise, we
use keywords as the main semantics of the original sentence to retrieve
corresponding knowledge words in the knowledge base, and construct a knowledge
graph. The graph encoding model is used to integrate the knowledge base
information into the model. Our designed model achieves state-of-the-art
performance on two publicly available Chinese Text Matching datasets,
demonstrating the effectiveness of our model.
Related papers
- Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - Pixel Sentence Representation Learning [67.4775296225521]
In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process.
We employ visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to be perceived as continuous.
Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision.
arXiv Detail & Related papers (2024-02-13T02:46:45Z) - Blending Reward Functions via Few Expert Demonstrations for Faithful and
Accurate Knowledge-Grounded Dialogue Generation [22.38338205905379]
We leverage reinforcement learning algorithms to overcome the above challenges by introducing a novel reward function.
Our reward function combines an accuracy metric and a faithfulness metric to provide a balanced quality judgment of generated responses.
arXiv Detail & Related papers (2023-11-02T02:42:41Z) - Enhancing Argument Structure Extraction with Efficient Leverage of
Contextual Information [79.06082391992545]
We propose an Efficient Context-aware model (ECASE) that fully exploits contextual information.
We introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information.
Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-08T08:47:10Z) - KETM:A Knowledge-Enhanced Text Matching method [0.0]
We introduce a new model for text matching called the Knowledge Enhanced Text Matching model (KETM)
We use Wiktionary to retrieve the text word definitions as our external knowledge.
We fuse text and knowledge using a gating mechanism to learn the ratio of text and knowledge fusion.
arXiv Detail & Related papers (2023-08-11T17:08:14Z) - Enhanced Knowledge Selection for Grounded Dialogues via Document
Semantic Graphs [123.50636090341236]
We propose to automatically convert background knowledge documents into document semantic graphs.
Our document semantic graphs preserve sentence-level information through the use of sentence nodes and provide concept connections between sentences.
Our experiments show that our semantic graph-based knowledge selection improves over sentence selection baselines for both the knowledge selection task and the end-to-end response generation task on HollE.
arXiv Detail & Related papers (2022-06-15T04:51:32Z) - Zero-shot Commonsense Question Answering with Cloze Translation and
Consistency Optimization [20.14487209460865]
We investigate four translation methods that can translate natural questions into cloze-style sentences.
We show that our methods are complementary datasets to a knowledge base improved model, and combining them can lead to state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2022-01-01T07:12:49Z) - Imposing Relation Structure in Language-Model Embeddings Using
Contrastive Learning [30.00047118880045]
We propose a novel contrastive learning framework that trains sentence embeddings to encode the relations in a graph structure.
The resulting relation-aware sentence embeddings achieve state-of-the-art results on the relation extraction task.
arXiv Detail & Related papers (2021-09-02T10:58:27Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
We present two approaches to narrative text understanding for character relationship modelling.
The temporal evolution of these relations is described by dynamic word embeddings, that are designed to learn semantic changes over time.
A supervised learning approach based on the state-of-the-art transformer model BERT is used instead to detect static relations between characters.
arXiv Detail & Related papers (2020-03-19T14:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.