Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition
- URL: http://arxiv.org/abs/2406.10501v1
- Date: Sat, 15 Jun 2024 04:50:19 GMT
- Title: Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition
- Authors: Weichao Zhao, Wengang Zhou, Hezhen Hu, Min Wang, Houqiang Li,
- Abstract summary: We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
- Score: 96.62264528407863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there have been efforts to improve the performance in sign language recognition by designing self-supervised learning methods. However, these methods capture limited information from sign pose data in a frame-wise learning manner, leading to sub-optimal solutions. To this end, we propose a simple yet effective self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency from two distinct perspectives and learn instance discriminative representation for sign language recognition. On one hand, since the semantics of sign language are expressed by the cooperation of fine-grained hands and coarse-grained trunks, we utilize both granularity information and encode them into latent spaces. The consistency between hand and trunk features is constrained to encourage learning consistent representation of instance samples. On the other hand, inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling. Additionally, we further bridge the interaction between the embedding spaces of both modalities, facilitating bidirectional knowledge transfer to enhance sign language representation. Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin. The source code is publicly available at https://github.com/sakura/Code.
Related papers
- MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production [93.32354378820648]
We propose a unified framework for continuous sign language production, easing communication between sign and non-sign language users.
A sequence diffusion model, utilizing embeddings extracted from text or speech, is crafted to generate sign predictions step by step.
Experiments on How2Sign and PHOENIX14T datasets demonstrate that our model achieves competitive performance in sign language production.
arXiv Detail & Related papers (2024-07-04T13:53:50Z) - SignMusketeers: An Efficient Multi-Stream Approach for Sign Language Translation at Scale [22.49602248323602]
A persistent challenge in sign language video processing is how we learn representations of sign language.
Our proposed method focuses on just the most relevant parts in a signing video: the face, hands and body posture of the signer.
Our approach is based on learning from individual frames (rather than video sequences) and is therefore much more efficient than prior work on sign language pre-training.
arXiv Detail & Related papers (2024-06-11T03:00:41Z) - MASA: Motion-aware Masked Autoencoder with Semantic Alignment for Sign Language Recognition [94.56755080185732]
We propose a Motion-Aware masked autoencoder with Semantic Alignment (MASA) that integrates rich motion cues and global semantic information.
Our framework can simultaneously learn local motion cues and global semantic features for comprehensive sign language representation.
arXiv Detail & Related papers (2024-05-31T08:06:05Z) - Pixel Sentence Representation Learning [67.4775296225521]
In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process.
We employ visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to be perceived as continuous.
Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision.
arXiv Detail & Related papers (2024-02-13T02:46:45Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
We study the feasibility of utilizing multilingual sign language corpora to facilitate continuous sign language recognition.
We first build two sign language dictionaries containing isolated signs that appear in two datasets.
Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model.
arXiv Detail & Related papers (2023-08-21T15:58:47Z) - Learnt Contrastive Concept Embeddings for Sign Recognition [33.72708697077754]
We focus on explicitly creating sign embeddings that bridge the gap between sign language and spoken language.
We train a vocabulary of embeddings that are based on the linguistic labels for sign video.
We develop a conceptual similarity loss which is able to utilise word embeddings from NLP methods to create sign embeddings that have better sign language to spoken language correspondence.
arXiv Detail & Related papers (2023-08-18T12:47:18Z) - SignBERT+: Hand-model-aware Self-supervised Pre-training for Sign
Language Understanding [132.78015553111234]
Hand gesture serves as a crucial role during the expression of sign language.
Current deep learning based methods for sign language understanding (SLU) are prone to over-fitting due to insufficient sign data resource.
We propose the first self-supervised pre-trainable SignBERT+ framework with model-aware hand prior incorporated.
arXiv Detail & Related papers (2023-05-08T17:16:38Z) - Context Matters: Self-Attention for Sign Language Recognition [1.005130974691351]
This paper proposes an attentional network for the task of Continuous Sign Language Recognition.
We exploit co-independent streams of data to model the sign language modalities.
We find that the model is able to identify the essential Sign Language components that revolve around the dominant hand and the face areas.
arXiv Detail & Related papers (2021-01-12T17:40:19Z) - Pose-based Sign Language Recognition using GCN and BERT [0.0]
Word-level sign language recognition (WSLR) is the first important step towards understanding and interpreting sign language.
recognizing signs from videos is a challenging task as the meaning of a word depends on a combination of subtle body motions, hand configurations, and other movements.
Recent pose-based architectures for W SLR either model both the spatial and temporal dependencies among the poses in different frames simultaneously or only model the temporal information without fully utilizing the spatial information.
We tackle the problem of W SLR using a novel pose-based approach, which captures spatial and temporal information separately and performs late fusion.
arXiv Detail & Related papers (2020-12-01T19:10:50Z) - Transferring Cross-domain Knowledge for Video Sign Language Recognition [103.9216648495958]
Word-level sign language recognition (WSLR) is a fundamental task in sign language interpretation.
We propose a novel method that learns domain-invariant visual concepts and fertilizes WSLR models by transferring knowledge of subtitled news sign to them.
arXiv Detail & Related papers (2020-03-08T03:05:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.