InstructBio: A Large-scale Semi-supervised Learning Paradigm for
Biochemical Problems
- URL: http://arxiv.org/abs/2304.03906v2
- Date: Fri, 14 Apr 2023 11:23:59 GMT
- Title: InstructBio: A Large-scale Semi-supervised Learning Paradigm for
Biochemical Problems
- Authors: Fang Wu, Huiling Qin, Siyuan Li, Stan Z. Li, Xianyuan Zhan, Jinbo Xu
- Abstract summary: InstructMol is a semi-supervised learning algorithm to take better advantage of unlabeled examples.
InstructBio substantially improves the generalization ability of molecular models.
- Score: 38.57333125315448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of artificial intelligence for science, it is consistently an
essential challenge to face a limited amount of labeled data for real-world
problems. The prevailing approach is to pretrain a powerful task-agnostic model
on a large unlabeled corpus but may struggle to transfer knowledge to
downstream tasks. In this study, we propose InstructMol, a semi-supervised
learning algorithm, to take better advantage of unlabeled examples. It
introduces an instructor model to provide the confidence ratios as the
measurement of pseudo-labels' reliability. These confidence scores then guide
the target model to pay distinct attention to different data points, avoiding
the over-reliance on labeled data and the negative influence of incorrect
pseudo-annotations. Comprehensive experiments show that InstructBio
substantially improves the generalization ability of molecular models, in not
only molecular property predictions but also activity cliff estimations,
demonstrating the superiority of the proposed method. Furthermore, our evidence
indicates that InstructBio can be equipped with cutting-edge pretraining
methods and used to establish large-scale and task-specific pseudo-labeled
molecular datasets, which reduces the predictive errors and shortens the
training process. Our work provides strong evidence that semi-supervised
learning can be a promising tool to overcome the data scarcity limitation and
advance molecular representation learning.
Related papers
- Physical Consistency Bridges Heterogeneous Data in Molecular Multi-Task Learning [79.75718786477638]
We exploit the specialty of molecular tasks that there are physical laws connecting them, and design consistency training approaches.
We demonstrate that the more accurate energy data can improve the accuracy of structure prediction.
We also find that consistency training can directly leverage force and off-equilibrium structure data to improve structure prediction.
arXiv Detail & Related papers (2024-10-14T03:11:33Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
We construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules.
Our dataset offers significant physicochemical interpretability to guide model development and design.
We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning.
arXiv Detail & Related papers (2024-06-13T02:50:23Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - TwinBooster: Synergising Large Language Models with Barlow Twins and
Gradient Boosting for Enhanced Molecular Property Prediction [0.0]
In this study, we use a fine-tuned large language model to integrate biological assays based on their textual information.
This architecture uses both assay information and molecular fingerprints to extract the true molecular information.
TwinBooster enables the prediction of properties of unseen bioassays and molecules by providing state-of-the-art zero-shot learning tasks.
arXiv Detail & Related papers (2024-01-09T10:36:20Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Embracing assay heterogeneity with neural processes for markedly
improved bioactivity predictions [0.276240219662896]
Predicting the bioactivity of a ligand is one of the hardest and most important challenges in computer-aided drug discovery.
Despite years of data collection and curation efforts, bioactivity data remains sparse and heterogeneous.
We present a hierarchical meta-learning framework that exploits the information synergy across disparate assays.
arXiv Detail & Related papers (2023-08-17T16:26:58Z) - Tyger: Task-Type-Generic Active Learning for Molecular Property
Prediction [121.97742787439546]
How to accurately predict the properties of molecules is an essential problem in AI-driven drug discovery.
To reduce annotation cost, deep Active Learning methods are developed to select only the most representative and informative data for annotating.
We propose a Task-type-generic active learning framework (termed Tyger) that is able to handle different types of learning tasks in a unified manner.
arXiv Detail & Related papers (2022-05-23T12:56:12Z) - Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image
Segmentation [4.935055133266873]
We propose a novel uncertainty-aware scheme to make models learn regions purposefully.
Specifically, we employ Monte Carlo Sampling as an estimation method to attain an uncertainty map.
In the backward process, we joint unsupervised and supervised losses to accelerate the convergence of the network.
arXiv Detail & Related papers (2021-11-23T03:26:24Z) - Extracting Chemical-Protein Interactions via Calibrated Deep Neural
Network and Self-training [0.8376091455761261]
"calibration" techniques have been applied to deep learning models to estimate the data uncertainty and improve the reliability.
In this study, to extract chemical--protein interactions, we propose a DNN-based approach incorporating uncertainty information and calibration techniques.
Our approach has achieved state-of-the-art performance with regard to the Biocreative VI ChemProt task, while preserving higher calibration abilities than those of previous approaches.
arXiv Detail & Related papers (2020-11-04T10:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.