Delving into Discrete Normalizing Flows on SO(3) Manifold for
Probabilistic Rotation Modeling
- URL: http://arxiv.org/abs/2304.03937v1
- Date: Sat, 8 Apr 2023 06:52:02 GMT
- Title: Delving into Discrete Normalizing Flows on SO(3) Manifold for
Probabilistic Rotation Modeling
- Authors: Yulin Liu, Haoran Liu, Yingda Yin, Yang Wang, Baoquan Chen, He Wang
- Abstract summary: We propose a novel normalizing flow on SO(3) manifold.
We show that our rotation normalizing flows significantly outperform the baselines on both unconditional and conditional tasks.
- Score: 30.09829541716024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalizing flows (NFs) provide a powerful tool to construct an expressive
distribution by a sequence of trackable transformations of a base distribution
and form a probabilistic model of underlying data. Rotation, as an important
quantity in computer vision, graphics, and robotics, can exhibit many
ambiguities when occlusion and symmetry occur and thus demands such
probabilistic models. Though much progress has been made for NFs in Euclidean
space, there are no effective normalizing flows without discontinuity or
many-to-one mapping tailored for SO(3) manifold. Given the unique non-Euclidean
properties of the rotation manifold, adapting the existing NFs to SO(3)
manifold is non-trivial. In this paper, we propose a novel normalizing flow on
SO(3) by combining a Mobius transformation-based coupling layer and a
quaternion affine transformation. With our proposed rotation normalizing flows,
one can not only effectively express arbitrary distributions on SO(3), but also
conditionally build the target distribution given input observations. Extensive
experiments show that our rotation normalizing flows significantly outperform
the baselines on both unconditional and conditional tasks.
Related papers
- Equivariant Flow Matching with Hybrid Probability Transport [69.11915545210393]
Diffusion Models (DMs) have demonstrated effectiveness in generating feature-rich geometries.
DMs typically suffer from unstable probability dynamics with inefficient sampling speed.
We introduce geometric flow matching, which enjoys the advantages of both equivariant modeling and stabilized probability dynamics.
arXiv Detail & Related papers (2023-12-12T11:13:13Z) - SE(3) Equivariant Augmented Coupling Flows [16.65770540017618]
Coupling normalizing flows allow for fast sampling and density evaluation.
Standard coupling architecture precludes endowing flows that operate on the Cartesian coordinates of atoms.
arXiv Detail & Related papers (2023-08-20T20:49:15Z) - Towards Robust Probabilistic Modeling on SO(3) via Rotation Laplace
Distribution [32.26083557492705]
Estimating the 3DoF rotation from a single RGB image is a challenging problem.
In this paper, we propose a novel rotation Laplace distribution on SO(3).
Our method is robust to the disturbance of outliers and enforces much gradient to the low-error region that it can improve.
arXiv Detail & Related papers (2023-05-17T12:31:48Z) - Tensorizing flows: a tool for variational inference [0.0]
We introduce an extension of normalizing flows in which the Gaussian reference is replaced with a reference distribution constructed via a tensor network.
We show that by combining flows with tensor networks on difficult variational inference tasks, we can improve on the results obtained by using either tool without the other.
arXiv Detail & Related papers (2023-05-03T23:42:22Z) - ManiFlow: Implicitly Representing Manifolds with Normalizing Flows [145.9820993054072]
Normalizing Flows (NFs) are flexible explicit generative models that have been shown to accurately model complex real-world data distributions.
We propose an optimization objective that recovers the most likely point on the manifold given a sample from the perturbed distribution.
Finally, we focus on 3D point clouds for which we utilize the explicit nature of NFs, i.e. surface normals extracted from the gradient of the log-likelihood and the log-likelihood itself.
arXiv Detail & Related papers (2022-08-18T16:07:59Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - E(n) Equivariant Normalizing Flows for Molecule Generation in 3D [87.12477361140716]
This paper introduces a generative model equivariant to Euclidean symmetries: E(n) Equivariant Normalizing Flows (E-NFs)
To the best of our knowledge, this is the first likelihood-based deep generative model that generates molecules in 3D.
arXiv Detail & Related papers (2021-05-19T09:28:54Z) - SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows [78.77808270452974]
SurVAE Flows is a modular framework for composable transformations that encompasses VAEs and normalizing flows.
We show that several recently proposed methods, including dequantization and augmented normalizing flows, can be expressed as SurVAE Flows.
arXiv Detail & Related papers (2020-07-06T13:13:22Z) - You say Normalizing Flows I see Bayesian Networks [11.23030807455021]
We show that normalizing flows reduce to Bayesian networks with a pre-defined topology and a learnable density at each node.
We show that stacking multiple transformations in a normalizing flow relaxes independence assumptions and entangles the model distribution.
We prove the non-universality of the affine normalizing flow, regardless of its depth.
arXiv Detail & Related papers (2020-06-01T11:54:50Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.