Equivariant Flow Matching with Hybrid Probability Transport
- URL: http://arxiv.org/abs/2312.07168v1
- Date: Tue, 12 Dec 2023 11:13:13 GMT
- Title: Equivariant Flow Matching with Hybrid Probability Transport
- Authors: Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano
Ermon, Hao Zhou, Wei-Ying Ma
- Abstract summary: Diffusion Models (DMs) have demonstrated effectiveness in generating feature-rich geometries.
DMs typically suffer from unstable probability dynamics with inefficient sampling speed.
We introduce geometric flow matching, which enjoys the advantages of both equivariant modeling and stabilized probability dynamics.
- Score: 69.11915545210393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation of 3D molecules requires simultaneously deciding the
categorical features~(atom types) and continuous features~(atom coordinates).
Deep generative models, especially Diffusion Models (DMs), have demonstrated
effectiveness in generating feature-rich geometries. However, existing DMs
typically suffer from unstable probability dynamics with inefficient sampling
speed. In this paper, we introduce geometric flow matching, which enjoys the
advantages of both equivariant modeling and stabilized probability dynamics.
More specifically, we propose a hybrid probability path where the coordinates
probability path is regularized by an equivariant optimal transport, and the
information between different modalities is aligned. Experimentally, the
proposed method could consistently achieve better performance on multiple
molecule generation benchmarks with 4.75$\times$ speed up of sampling on
average.
Related papers
- Inferring Parameter Distributions in Heterogeneous Motile Particle Ensembles: A Likelihood Approach for Second Order Langevin Models [0.8274836883472768]
Inference methods are required to understand and predict the motion patterns from time discrete trajectory data provided by experiments.
We propose a new method to approximate the likelihood for non-linear second order Langevin models.
We thereby pave the way for the systematic, data-driven inference of dynamical models for actively driven entities.
arXiv Detail & Related papers (2024-11-13T15:27:02Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Discrete Flow Matching [74.04153927689313]
We present a novel discrete flow paradigm designed specifically for generating discrete data.
Our approach is capable of generating high-quality discrete data in a non-autoregressive fashion.
arXiv Detail & Related papers (2024-07-22T12:33:27Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Unified Generative Modeling of 3D Molecules via Bayesian Flow Networks [19.351562908683334]
GeoBFN naturally fits molecule geometry by modeling diverse modalities in the differentiable parameter space of distributions.
We demonstrate that GeoBFN achieves state-of-the-art performance on multiple 3D molecule generation benchmarks in terms of generation quality.
GeoBFN can also conduct sampling with any number of steps to reach an optimal trade-off between efficiency and quality.
arXiv Detail & Related papers (2024-03-17T08:40:06Z) - SE(3) Equivariant Augmented Coupling Flows [16.65770540017618]
Coupling normalizing flows allow for fast sampling and density evaluation.
Standard coupling architecture precludes endowing flows that operate on the Cartesian coordinates of atoms.
arXiv Detail & Related papers (2023-08-20T20:49:15Z) - Equivariant flow matching [0.9208007322096533]
We introduce equivariant flow matching, a new training objective for equivariant continuous normalizing flows (CNFs)
Equivariant flow matching exploits the physical symmetries of the target energy for efficient, simulation-free training of equivariant CNFs.
Our results show that the equivariant flow matching objective yields flows with shorter integration paths, improved sampling efficiency, and higher scalability compared to existing methods.
arXiv Detail & Related papers (2023-06-26T19:40:10Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.