Benchmarking the Robustness of Quantized Models
- URL: http://arxiv.org/abs/2304.03968v1
- Date: Sat, 8 Apr 2023 09:34:55 GMT
- Title: Benchmarking the Robustness of Quantized Models
- Authors: Yisong Xiao, Tianyuan Zhang, Shunchang Liu, Haotong Qin
- Abstract summary: Quantization is an essential technique for deploying deep neural networks (DNNs) on devices with limited resources.
Existing research on this topic is limited and often disregards established principles of evaluation.
Our research contributes to advancing the robust quantization of models and their deployment in real-world scenarios.
- Score: 12.587947681480909
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization has emerged as an essential technique for deploying deep neural
networks (DNNs) on devices with limited resources. However, quantized models
exhibit vulnerabilities when exposed to various noises in real-world
applications. Despite the importance of evaluating the impact of quantization
on robustness, existing research on this topic is limited and often disregards
established principles of robustness evaluation, resulting in incomplete and
inconclusive findings. To address this gap, we thoroughly evaluated the
robustness of quantized models against various noises (adversarial attacks,
natural corruptions, and systematic noises) on ImageNet. Extensive experiments
demonstrate that lower-bit quantization is more resilient to adversarial
attacks but is more susceptible to natural corruptions and systematic noises.
Notably, our investigation reveals that impulse noise (in natural corruptions)
and the nearest neighbor interpolation (in systematic noises) have the most
significant impact on quantized models. Our research contributes to advancing
the robust quantization of models and their deployment in real-world scenarios.
Related papers
- Investigating the Impact of Quantization on Adversarial Robustness [22.637585106574722]
Quantization is a technique for reducing the bit-width of deep models to improve their runtime performance and storage efficiency.
In real-world scenarios, quantized models are often faced with adversarial attacks which cause the model to make incorrect inferences.
We conduct a first-time analysis of the impact of the quantization pipeline components that can incorporate robust optimization.
arXiv Detail & Related papers (2024-04-08T16:20:15Z) - Flexible Error Mitigation of Quantum Processes with Data Augmentation
Empowered Neural Model [9.857921247636451]
We propose a data augmentation empowered neural model for error mitigation (DAEM)
Our model does not require any prior knowledge about the specific noise type and measurement settings.
It can estimate noise-free statistics solely from the noisy measurement results of the target quantum process.
arXiv Detail & Related papers (2023-11-03T05:52:14Z) - RobustMQ: Benchmarking Robustness of Quantized Models [54.15661421492865]
Quantization is an essential technique for deploying deep neural networks (DNNs) on devices with limited resources.
We thoroughly evaluated the robustness of quantized models against various noises (adrial attacks, natural corruptions, and systematic noises) on ImageNet.
Our research contributes to advancing the robust quantization of models and their deployment in real-world scenarios.
arXiv Detail & Related papers (2023-08-04T14:37:12Z) - Exponentially tighter bounds on limitations of quantum error mitigation [2.936007114555107]
Quantum error mitigation has been proposed as a means to combat unwanted and unavoidable errors in near-term quantum computing.
In this work, we identify strong limitations to the degree to which quantum noise can be effectively undone' for larger system sizes.
arXiv Detail & Related papers (2022-10-20T18:12:42Z) - Mixed-Precision Inference Quantization: Radically Towards Faster
inference speed, Lower Storage requirement, and Lower Loss [4.877532217193618]
Existing quantization techniques rely heavily on experience and "fine-tuning" skills.
This study provides a methodology for acquiring a mixed-precise quantization model with a lower loss than the full precision model.
In particular, we will demonstrate that neural networks with massive identity mappings are resistant to the quantization method.
arXiv Detail & Related papers (2022-07-20T10:55:34Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - A Frequency Perspective of Adversarial Robustness [72.48178241090149]
We present a frequency-based understanding of adversarial examples, supported by theoretical and empirical findings.
Our analysis shows that adversarial examples are neither in high-frequency nor in low-frequency components, but are simply dataset dependent.
We propose a frequency-based explanation for the commonly observed accuracy vs. robustness trade-off.
arXiv Detail & Related papers (2021-10-26T19:12:34Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.