Investigating the Impact of Quantization on Adversarial Robustness
- URL: http://arxiv.org/abs/2404.05639v1
- Date: Mon, 8 Apr 2024 16:20:15 GMT
- Title: Investigating the Impact of Quantization on Adversarial Robustness
- Authors: Qun Li, Yuan Meng, Chen Tang, Jiacheng Jiang, Zhi Wang,
- Abstract summary: Quantization is a technique for reducing the bit-width of deep models to improve their runtime performance and storage efficiency.
In real-world scenarios, quantized models are often faced with adversarial attacks which cause the model to make incorrect inferences.
We conduct a first-time analysis of the impact of the quantization pipeline components that can incorporate robust optimization.
- Score: 22.637585106574722
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantization is a promising technique for reducing the bit-width of deep models to improve their runtime performance and storage efficiency, and thus becomes a fundamental step for deployment. In real-world scenarios, quantized models are often faced with adversarial attacks which cause the model to make incorrect inferences by introducing slight perturbations. However, recent studies have paid less attention to the impact of quantization on the model robustness. More surprisingly, existing studies on this topic even present inconsistent conclusions, which prompted our in-depth investigation. In this paper, we conduct a first-time analysis of the impact of the quantization pipeline components that can incorporate robust optimization under the settings of Post-Training Quantization and Quantization-Aware Training. Through our detailed analysis, we discovered that this inconsistency arises from the use of different pipelines in different studies, specifically regarding whether robust optimization is performed and at which quantization stage it occurs. Our research findings contribute insights into deploying more secure and robust quantized networks, assisting practitioners in reference for scenarios with high-security requirements and limited resources.
Related papers
- Compensate Quantization Errors+: Quantized Models Are Inquisitive Learners [17.43650511873449]
Large Language Models (LLMs) showcase remarkable performance and robust deductive capabilities, yet their expansive size complicates deployment and raises environmental concerns due to substantial resource consumption.
We have developed innovative methods that enhance the performance of quantized LLMs, particularly in low-bit settings.
Our methods consistently deliver state-of-the-art results across various quantization scenarios and offer deep theoretical insights into the quantization process, elucidating the potential of quantized models for widespread application.
arXiv Detail & Related papers (2024-07-22T09:45:16Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - Effect of Weight Quantization on Learning Models by Typical Case
Analysis [6.9060054915724]
The recent surge in data analysis scale has significantly increased computational resource requirements.
Quantization is vital for deploying large models on devices with limited computational resources.
arXiv Detail & Related papers (2024-01-30T18:58:46Z) - RobustMQ: Benchmarking Robustness of Quantized Models [54.15661421492865]
Quantization is an essential technique for deploying deep neural networks (DNNs) on devices with limited resources.
We thoroughly evaluated the robustness of quantized models against various noises (adrial attacks, natural corruptions, and systematic noises) on ImageNet.
Our research contributes to advancing the robust quantization of models and their deployment in real-world scenarios.
arXiv Detail & Related papers (2023-08-04T14:37:12Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
We propose a novel quantize before fine-tuning'' framework, PreQuant.
PreQuant is compatible with various quantization strategies, with outlier-aware fine-tuning incorporated to correct the induced quantization error.
We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5.
arXiv Detail & Related papers (2023-05-30T08:41:33Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
In this paper, we re-examine the concept of unlearnable examples and discern that the existing robust error-minimizing noise presents an inaccurate optimization objective.
We introduce a novel optimization paradigm that yields improved protection results with reduced computational time requirements.
arXiv Detail & Related papers (2023-05-18T04:03:51Z) - Benchmarking the Robustness of Quantized Models [12.587947681480909]
Quantization is an essential technique for deploying deep neural networks (DNNs) on devices with limited resources.
Existing research on this topic is limited and often disregards established principles of evaluation.
Our research contributes to advancing the robust quantization of models and their deployment in real-world scenarios.
arXiv Detail & Related papers (2023-04-08T09:34:55Z) - Counterfactual Learning with Multioutput Deep Kernels [0.0]
In this paper, we address the challenge of performing counterfactual inference with observational data.
We present a general class of counterfactual multi-task deep kernels models that estimate causal effects and learn policies proficiently.
arXiv Detail & Related papers (2022-11-20T23:28:41Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.