論文の概要: RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors
- arxiv url: http://arxiv.org/abs/2304.03994v1
- Date: Sat, 8 Apr 2023 12:12:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 18:23:46.703263
- Title: RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors
- Title(参考訳): RIDCP:ハイクオリティなコードブックでリアルなデハジングを再現
- Authors: Rui-Qi Wu, Zheng-Peng Duan, Chun-Le Guo, Zhi Chai, Chong-Yi Li
- Abstract要約: 既存のデハジングアプローチは、ペアの実際のデータと堅牢な事前処理が欠如しているため、現実のハジーなイメージを処理するのに苦労している。
よりリアルなヘイズデータを合成する観点から、実画像のデハジングのための新しいパラダイムを提案する。
- 参考スコア(独自算出の注目度): 14.432465539590481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing dehazing approaches struggle to process real-world hazy images owing
to the lack of paired real data and robust priors. In this work, we present a
new paradigm for real image dehazing from the perspectives of synthesizing more
realistic hazy data and introducing more robust priors into the network.
Specifically, (1) instead of adopting the de facto physical scattering model,
we rethink the degradation of real hazy images and propose a phenomenological
pipeline considering diverse degradation types. (2) We propose a Real Image
Dehazing network via high-quality Codebook Priors (RIDCP). Firstly, a VQGAN is
pre-trained on a large-scale high-quality dataset to obtain the discrete
codebook, encapsulating high-quality priors (HQPs). After replacing the
negative effects brought by haze with HQPs, the decoder equipped with a novel
normalized feature alignment module can effectively utilize high-quality
features and produce clean results. However, although our degradation pipeline
drastically mitigates the domain gap between synthetic and real data, it is
still intractable to avoid it, which challenges HQPs matching in the wild.
Thus, we re-calculate the distance when matching the features to the HQPs by a
controllable matching operation, which facilitates finding better counterparts.
We provide a recommendation to control the matching based on an explainable
solution. Users can also flexibly adjust the enhancement degree as per their
preference. Extensive experiments verify the effectiveness of our data
synthesis pipeline and the superior performance of RIDCP in real image
dehazing.
- Abstract(参考訳): 既存のデハジングアプローチは、ペアの実際のデータと堅牢な事前情報がないため、現実世界のハジングイメージを処理するのに苦労している。
本稿では,よりリアルなヘイジーデータを合成し,ネットワークにより堅牢なプリエントを導入するという観点から,実画像デヘイジングの新しいパラダイムを提案する。
具体的には,(1)デファクト物理散乱モデルを採用する代わりに,実画像の劣化を再考し,多様な劣化型を考慮した現象的パイプラインを提案する。
2)高品質なコードブックプライオリティ(RIDCP)を用いたリアルイメージデハージングネットワークを提案する。
第一に、VQGANは大規模で高品質なデータセット上で事前訓練され、高品質な事前(HQP)をカプセル化した離散コードブックを得る。
新規な正規化された特徴アライメントモジュールを備えたデコーダは、ヘイズによる負の効果をHQPsに置き換えることで、高品質な特徴を効果的に活用し、クリーンな結果が得られる。
しかしながら、我々の分解パイプラインは、合成データと実際のデータの間のドメインギャップを大幅に軽減しますが、それを避けることは困難です。
そこで,本研究では,特徴をHQPにマッチングする際の距離を,制御可能なマッチング操作により再計算する。
説明可能な解に基づいてマッチングを制御することを推奨する。
ユーザーは好みに応じて拡張度を柔軟に調整することもできる。
画像デハージングにおけるデータ合成パイプラインの有効性と RIDCP の優れた性能の検証を行った。
関連論文リスト
- Chasing Better Deep Image Priors between Over- and Under-parameterization [63.8954152220162]
そこで本研究では,DNN固有の空間性を利用して,LIP(lottery image prior)を新たに検討する。
LIPworksは、コンパクトなモデルサイズでディープデコーダを著しく上回っている。
また、LIPを圧縮センシング画像再構成に拡張し、事前学習したGANジェネレータを前者として使用する。
論文 参考訳(メタデータ) (2024-10-31T17:49:44Z) - Real-world Image Dehazing with Coherence-based Label Generator and Cooperative Unfolding Network [50.31598963315055]
実世界のイメージデハジングは、実世界の設定におけるヘイズによる劣化を軽減することを目的としている。
本研究では,大気散乱と画像シーンを協調的にモデル化する,協調的展開ネットワークを提案する。
また,コヒーレンスに基づくラベルジェネレータと呼ばれるRID指向の反復型平均教師フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-12T07:44:22Z) - Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [57.056311855630916]
本稿では,制御可能な生成画像圧縮フレームワークである制御-GICを提案する。
高忠実度および一般性圧縮を確保しつつ、広帯域での微粒化適応を可能にする。
我々は、歴史的符号化された多粒度表現に遡ることができる条件条件付き条件付けを開発する。
論文 参考訳(メタデータ) (2024-06-02T14:22:09Z) - VQCNIR: Clearer Night Image Restoration with Vector-Quantized Codebook [16.20461368096512]
夜景撮影は、暗い環境や長時間の露光から生じる、暗い光やぼやけなどの課題に苦しむことが多い。
私たちは、データ駆動の高品質な事前処理の強みを信じ、手動による事前処理の制限を回避するために、信頼性と一貫性のある事前処理の提供に努めています。
VQCNIR(Vector-Quantized Codebook)を用いたClearer Night Image Restorationを提案する。
論文 参考訳(メタデータ) (2023-12-14T02:16:27Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Dual Associated Encoder for Face Restoration [68.49568459672076]
低品質(LQ)画像から顔の詳細を復元するために,DAEFRという新しいデュアルブランチフレームワークを提案する。
提案手法では,LQ入力から重要な情報を抽出する補助的なLQ分岐を導入する。
合成と実世界の両方のデータセットに対するDAEFRの有効性を評価する。
論文 参考訳(メタデータ) (2023-08-14T17:58:33Z) - ReContrast: Domain-Specific Anomaly Detection via Contrastive
Reconstruction [29.370142078092375]
殆どの高度な教師なし異常検出(UAD)手法は、大規模データセットで事前訓練された冷凍エンコーダネットワークの特徴表現をモデル化することに依存している。
本稿では,事前学習した画像領域に対するバイアスを低減するために,ネットワーク全体を最適化する新しい疫学的UAD手法であるReContrastを提案する。
2つの一般的な産業欠陥検出ベンチマークと3つの医用画像UADタスクで実験を行い、現在の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-05T05:21:15Z) - High-Perceptual Quality JPEG Decoding via Posterior Sampling [13.238373528922194]
JPEGアーチファクト修正のための異なるパラダイムを提案する。
我々は、圧縮された入力と整合しながら、シャープで詳細で視覚的に再構成された画像を得ることを目指している。
我々のソリューションは、完全な整合性のある入力に対して、多種多様な可塑性かつ高速な再構成を提供する。
論文 参考訳(メタデータ) (2022-11-21T19:47:59Z) - Towards Robust Blind Face Restoration with Codebook Lookup Transformer [94.48731935629066]
ブラインドフェイスの修復は、しばしば補助的なガイダンスを必要とする非常に不適切な問題である。
学習した個別のコードブックを小さなプロキシ空間に配置し,ブラインドフェイスの復元をコード予測タスクとすることを示す。
我々は、低品質顔のグローバルな構成とコンテキストをモデル化するトランスフォーマーベースの予測ネットワーク、CodeFormerを提案する。
論文 参考訳(メタデータ) (2022-06-22T17:58:01Z) - SelFSR: Self-Conditioned Face Super-Resolution in the Wild via Flow
Field Degradation Network [12.976199676093442]
野生における顔超解像のための新しいドメイン適応分解ネットワークを提案する。
我々のモデルは,CelebAと実世界の顔データセットの両方で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-20T17:04:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。