Stable and Safe Reinforcement Learning via a Barrier-Lyapunov
Actor-Critic Approach
- URL: http://arxiv.org/abs/2304.04066v3
- Date: Thu, 28 Sep 2023 19:12:03 GMT
- Title: Stable and Safe Reinforcement Learning via a Barrier-Lyapunov
Actor-Critic Approach
- Authors: Liqun Zhao, Konstantinos Gatsis, Antonis Papachristodoulou
- Abstract summary: Barrier-Lyapunov Actor-Critic (BLAC) framework helps maintain the aforementioned safety and stability for the system.
Additional backup controller is introduced in case the RL-based controller cannot provide valid control signals.
- Score: 1.8924647429604111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) has demonstrated impressive performance in
various areas such as video games and robotics. However, ensuring safety and
stability, which are two critical properties from a control perspective,
remains a significant challenge when using RL to control real-world systems. In
this paper, we first provide definitions of safety and stability for the RL
system, and then combine the control barrier function (CBF) and control
Lyapunov function (CLF) methods with the actor-critic method in RL to propose a
Barrier-Lyapunov Actor-Critic (BLAC) framework which helps maintain the
aforementioned safety and stability for the system. In this framework, CBF
constraints for safety and CLF constraint for stability are constructed based
on the data sampled from the replay buffer, and the augmented Lagrangian method
is used to update the parameters of the RL-based controller. Furthermore, an
additional backup controller is introduced in case the RL-based controller
cannot provide valid control signals when safety and stability constraints
cannot be satisfied simultaneously. Simulation results show that this framework
yields a controller that can help the system approach the desired state and
cause fewer violations of safety constraints compared to baseline algorithms.
Related papers
- Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints [50.920465513162334]
We introduce the PCBF algorithm to maximize the inner safe set of dynamical systems under input constraints.
We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system.
Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
arXiv Detail & Related papers (2024-10-05T18:45:19Z) - Reinforcement Learning-based Receding Horizon Control using Adaptive Control Barrier Functions for Safety-Critical Systems [14.166970599802324]
Optimal control methods provide solutions to safety-critical problems but easily become intractable.
We propose a Reinforcement Learning-based Receding Horizon Control approach leveraging Model Predictive Control.
We validate our method by applying it to the challenging automated merging control problem for Connected and Automated Vehicles.
arXiv Detail & Related papers (2024-03-26T02:49:08Z) - Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
We develop provably safe and convergent reinforcement learning algorithms for control of nonlinear dynamical systems.
Recent advances at the intersection of control and RL follow a two-stage, safety filter approach to enforcing hard safety constraints.
We develop a single-stage, sampling-based approach to hard constraint satisfaction that learns RL controllers enjoying classical convergence guarantees.
arXiv Detail & Related papers (2024-03-06T19:39:20Z) - Modular Control Architecture for Safe Marine Navigation: Reinforcement Learning and Predictive Safety Filters [0.0]
Reinforcement learning is increasingly used to adapt to complex scenarios, but standard frameworks ensuring safety and stability are lacking.
Predictive Safety Filters (PSF) offer a promising solution, ensuring constraint satisfaction in learning-based control without explicit constraint handling.
We apply this approach to marine navigation, combining RL with PSF on a simulated Cybership II model.
Results demonstrate the PSF's effectiveness in maintaining safety without hindering the RL agent's learning rate and performance, evaluated against a standard RL agent without PSF.
arXiv Detail & Related papers (2023-12-04T12:37:54Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
This paper addresses the problem of safety-critical control for non-affine control systems.
It has been shown that optimizing quadratic costs subject to state and control constraints can be sub-optimally reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs)
We incorporate higher-order CBFs into neural ordinary differential equation-based learning models as differentiable CBFs to guarantee safety for non-affine control systems.
arXiv Detail & Related papers (2023-09-06T05:35:48Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Learning Robust Hybrid Control Barrier Functions for Uncertain Systems [68.30783663518821]
We propose robust hybrid control barrier functions as a means to synthesize control laws that ensure robust safety.
Based on this notion, we formulate an optimization problem for learning robust hybrid control barrier functions from data.
Our techniques allow us to safely expand the region of attraction of a compass gait walker that is subject to model uncertainty.
arXiv Detail & Related papers (2021-01-16T17:53:35Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.