Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints
- URL: http://arxiv.org/abs/2410.04260v1
- Date: Sat, 5 Oct 2024 18:45:19 GMT
- Title: Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints
- Authors: Xiaoyang Cao, Zhe Fu, Alexandre M. Bayen,
- Abstract summary: We introduce the PCBF algorithm to maximize the inner safe set of dynamical systems under input constraints.
We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system.
Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
- Score: 50.920465513162334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article introduces the Pareto Control Barrier Function (PCBF) algorithm to maximize the inner safe set of dynamical systems under input constraints. Traditional Control Barrier Functions (CBFs) ensure safety by maintaining system trajectories within a safe set but often fail to account for realistic input constraints. To address this problem, we leverage the Pareto multi-task learning framework to balance competing objectives of safety and safe set volume. The PCBF algorithm is applicable to high-dimensional systems and is computationally efficient. We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system. Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
Related papers
- Reinforcement Learning-based Receding Horizon Control using Adaptive Control Barrier Functions for Safety-Critical Systems [14.166970599802324]
Optimal control methods provide solutions to safety-critical problems but easily become intractable.
We propose a Reinforcement Learning-based Receding Horizon Control approach leveraging Model Predictive Control.
We validate our method by applying it to the challenging automated merging control problem for Connected and Automated Vehicles.
arXiv Detail & Related papers (2024-03-26T02:49:08Z) - Learning Performance-Oriented Control Barrier Functions Under Complex Safety Constraints and Limited Actuation [5.62479170374811]
Control Barrier Functions (CBFs) provide an elegant framework for constraining nonlinear control system dynamics.
We introduce a novel self-supervised learning framework to comprehensively address these challenges.
We validate our approach on a 2D double integrator (DI) system and a 7D fixed-wing aircraft system.
arXiv Detail & Related papers (2024-01-11T02:51:49Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
This paper addresses the problem of safety-critical control for non-affine control systems.
It has been shown that optimizing quadratic costs subject to state and control constraints can be sub-optimally reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs)
We incorporate higher-order CBFs into neural ordinary differential equation-based learning models as differentiable CBFs to guarantee safety for non-affine control systems.
arXiv Detail & Related papers (2023-09-06T05:35:48Z) - Stable and Safe Reinforcement Learning via a Barrier-Lyapunov
Actor-Critic Approach [1.8924647429604111]
Barrier-Lyapunov Actor-Critic (BLAC) framework helps maintain the aforementioned safety and stability for the system.
Additional backup controller is introduced in case the RL-based controller cannot provide valid control signals.
arXiv Detail & Related papers (2023-04-08T16:48:49Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Reinforcement Learning for Safety-Critical Control under Model
Uncertainty, using Control Lyapunov Functions and Control Barrier Functions [96.63967125746747]
Reinforcement learning framework learns the model uncertainty present in the CBF and CLF constraints.
RL-CBF-CLF-QP addresses the problem of model uncertainty in the safety constraints.
arXiv Detail & Related papers (2020-04-16T10:51:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.