論文の概要: Deep Prototypical-Parts Ease Morphological Kidney Stone Identification
and are Competitively Robust to Photometric Perturbations
- arxiv url: http://arxiv.org/abs/2304.04077v1
- Date: Sat, 8 Apr 2023 17:43:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 17:46:52.564698
- Title: Deep Prototypical-Parts Ease Morphological Kidney Stone Identification
and are Competitively Robust to Photometric Perturbations
- Title(参考訳): 深部原型-部は形態学的腎臓石の識別を容易にし、光度摂動と競争的にロバストである
- Authors: Daniel Flores-Araiza, Francisco Lopez-Tiro, Jonathan El-Beze, Jacques
Hubert, Miguel Gonzalez-Mendoza, Gilberto Ochoa-Ruiz, Christian Daul
- Abstract要約: 腎結石サブタイプ当たりのプロトタイプ部分(PP)を学習し,出力分類を生成する。
我々の実装の平均精度は、最先端(SOTA)非解釈可能なDLモデルよりも1.5%低い。
本モデルでは, 対向訓練を伴わずに, 標準偏差の低い摂動画像を2.8%向上させる。
- 参考スコア(独自算出の注目度): 0.9236074230806579
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying the type of kidney stones can allow urologists to determine their
cause of formation, improving the prescription of appropriate treatments to
diminish future relapses. Currently, the associated ex-vivo diagnosis (known as
Morpho-constitutional Analysis, MCA) is time-consuming, expensive and requires
a great deal of experience, as it requires a visual analysis component that is
highly operator dependant. Recently, machine learning methods have been
developed for in-vivo endoscopic stone recognition. Deep Learning (DL) based
methods outperform non-DL methods in terms of accuracy but lack explainability.
Despite this trade-off, when it comes to making high-stakes decisions, it's
important to prioritize understandable Computer-Aided Diagnosis (CADx) that
suggests a course of action based on reasonable evidence, rather than a model
prescribing a course of action. In this proposal, we learn Prototypical Parts
(PPs) per kidney stone subtype, which are used by the DL model to generate an
output classification. Using PPs in the classification task enables case-based
reasoning explanations for such output, thus making the model interpretable. In
addition, we modify global visual characteristics to describe their relevance
to the PPs and the sensitivity of our model's performance. With this, we
provide explanations with additional information at the sample, class and model
levels in contrast to previous works. Although our implementation's average
accuracy is lower than state-of-the-art (SOTA) non-interpretable DL models by
1.5 %, our models perform 2.8% better on perturbed images with a lower standard
deviation, without adversarial training. Thus, Learning PPs has the potential
to create more robust DL models.
- Abstract(参考訳): 腎臓結石の種類を特定することで、尿器科医は形成の原因を判断し、将来の再発を減らすために適切な治療法の処方を改善することができる。
現在、Morpho-constitutional Analysis (MCA) として知られるこの診断は時間がかかり、コストがかかり、高い演算子に依存した視覚分析コンポーネントを必要とするため、多くの経験を必要とする。
近年,生体内結石認識のための機械学習法が開発されている。
ディープラーニング(DL)ベースの手法は、精度では非DLメソッドよりも優れているが、説明性に欠ける。
このようなトレードオフにもかかわらず、ハイテイクな意思決定を行う上では、行動方針を規定するモデルではなく、合理的な証拠に基づく行動の道筋を示す理解可能なコンピュータ支援診断(CADx)を優先することが重要である。
本提案では,腎結石サブタイプ当たりのPP(Prototypeal Parts)を学習し,DLモデルを用いて出力分類を生成する。
分類タスクでppsを使用することで、このような出力のケースベース推論説明が可能になり、モデル解釈が可能になる。
さらに,ppsとの関連性とモデルの性能の感度を記述するために,グローバル視覚特性の修正を行った。
これにより、従来の作業とは対照的に、サンプル、クラス、モデルレベルで追加情報を含む説明を提供する。
我々の実装の平均精度は、最先端(SOTA)非解釈可能なDLモデルよりも1.5%低いが、我々のモデルは、対戦訓練なしで、標準偏差の低い摂動画像に対して2.8%向上する。
このように、学習PPはより堅牢なDLモデルを作成する可能性がある。
関連論文リスト
- Improving Prototypical Parts Abstraction for Case-Based Reasoning Explanations Designed for the Kidney Stone Type Recognition [2.5506430540951763]
尿管鏡による腎結石の同定は、尿学の大きな医学的進歩となる。
近年,尿管鏡画像を用いて腎臓結石のタイプを自動的に認識する深層学習(DL)モデルが提案されている。
このコントリビューションは, 原型部品(PP)を使用し, 局所的および大域的記述子を生成するケースベース推論DLモデルを提案する。
論文 参考訳(メタデータ) (2024-09-19T16:27:32Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
虚血性脳卒中における血栓塞栓源の同定は治療と二次予防に不可欠である。
本研究は,虚血性脳梗塞の発生源を分類するためのエンボリのデジタル病理学における自己教師型深層学習アプローチについて述べる。
論文 参考訳(メタデータ) (2024-05-01T23:40:12Z) - Interpretable Medical Image Classification using Prototype Learning and
Privileged Information [0.0]
解釈可能性はしばしば医療画像に必須の要件である。
本研究では,学習プロセスで利用可能な追加情報を用いて,理解しやすく強力なモデルを構築することができるかを検討する。
本稿では,カプセルネットワーク,プロトタイプ学習,特権情報の利用といったメリットを活用する,Proto-Capsと呼ばれる革新的なソリューションを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:28:59Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - A metric learning approach for endoscopic kidney stone identification [0.879504058268139]
本稿では,DML(Deep Metric Learning)手法を用いて,サンプル数が少ないクラスを扱えるようにし,また,分散サンプルが存在しないクラスを適切に一般化し,データベースに付加される新しいクラスに対処する。
提案したガイド付き深度学習アプローチは、データ表現を改良された方法で学習するように設計された、新しいアーキテクチャに基づいている。
教師モデル(GEMINI)は、ラベル付きデータから事前知識に基づいて仮説空間を縮小し、知識蒸留方式により学生モデル(ResNet50)のガイドとして使用される。
論文 参考訳(メタデータ) (2023-07-13T20:02:07Z) - Interpretable Deep Learning Classifier by Detection of Prototypical
Parts on Kidney Stones Images [0.9236074230806579]
現在、関連する前生検(形態構成分析(MCA)として知られる)は、時間がかかり、高価であり、多くの経験を必要とする。
生体内内視鏡による石の認識のための機械学習手法が開発されている。
提案手法は腎臓結石像の分類を提案し, MCA法と類似した説明を提供する。
論文 参考訳(メタデータ) (2022-06-01T06:32:31Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Categorical Relation-Preserving Contrastive Knowledge Distillation for
Medical Image Classification [75.27973258196934]
そこで本研究では,一般的な平均教師モデルであるCRCKD(Categorical Relation-Reserving Contrastive Knowledge Distillation)アルゴリズムを提案する。
この正規化により、学生モデルの特徴分布はクラス内類似度が高く、クラス間分散を示す。
CCDとCRPの貢献により、我々のCRCKDアルゴリズムはより包括的に関係知識を蒸留することができる。
論文 参考訳(メタデータ) (2021-07-07T13:56:38Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。