SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex
Optimization
- URL: http://arxiv.org/abs/2304.04169v1
- Date: Sun, 9 Apr 2023 06:10:49 GMT
- Title: SLowcal-SGD: Slow Query Points Improve Local-SGD for Stochastic Convex
Optimization
- Authors: Kfir Y. Levy
- Abstract summary: We design the first local update method that provably benefits over the two most prominent distributed baselines: Minibatch-SGD and Local-SGD.
Key to our approach is a slow querying technique that we customize to the distributed setting, which in turn enables a better mitigation of the bias caused by local updates.
- Score: 12.709177728330399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider distributed learning scenarios where M machines interact with a
parameter server along several communication rounds in order to minimize a
joint objective function. Focusing on the heterogeneous case, where different
machines may draw samples from different data-distributions, we design the
first local update method that provably benefits over the two most prominent
distributed baselines: namely Minibatch-SGD and Local-SGD. Key to our approach
is a slow querying technique that we customize to the distributed setting,
which in turn enables a better mitigation of the bias caused by local updates.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Computing Low-Entropy Couplings for Large-Support Distributions [53.00113867130712]
Minimum-entropy coupling has applications in areas such as causality and steganography.
Existing algorithms are either computationally intractable for large-support distributions or limited to specific distribution types.
This work addresses these limitations by unifying a prior family of iterative MEC approaches into a generalized partition-based formalism.
arXiv Detail & Related papers (2024-05-29T21:54:51Z) - Dual Adversarial Alignment for Realistic Support-Query Shift Few-shot
Learning [15.828113109152069]
Support-Query Shift Few-shot learning aims to classify unseen examples (query set) to labeled data (support set) based on the learned embedding in a low-dimensional space.
In this paper, we propose a novel but more difficult challenge, Realistic Support-Query Shift few-shot learning.
In addition, we propose a unified adversarial feature alignment method called DUal adversarial ALignment framework (DuaL) to relieve RSQS from two aspects, i.e., inter-domain bias and intra-domain variance.
arXiv Detail & Related papers (2023-09-05T09:50:31Z) - On Second-order Optimization Methods for Federated Learning [59.787198516188425]
We evaluate the performance of several second-order distributed methods with local steps in the federated learning setting.
We propose a novel variant that uses second-order local information for updates and a global line search to counteract the resulting local specificity.
arXiv Detail & Related papers (2021-09-06T12:04:08Z) - STEM: A Stochastic Two-Sided Momentum Algorithm Achieving Near-Optimal
Sample and Communication Complexities for Federated Learning [58.6792963686231]
Federated Learning (FL) refers to the paradigm where multiple worker nodes (WNs) build a joint model by using local data.
It is not clear how to choose the WNs' minimum update directions, the first minibatch sizes, and the local update frequency.
We show that there is a trade-off curve between local update frequencies and local mini sizes, on which the above complexities can be maintained.
arXiv Detail & Related papers (2021-06-19T06:13:45Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z) - Local SGD: Unified Theory and New Efficient Methods [8.701566919381223]
We present a unified framework for analyzing local SGD methods in the convex and strongly convex regimes.
We develop the first linearly converging local SGD method which does not require any data homogeneity or other strong assumptions.
arXiv Detail & Related papers (2020-11-03T13:02:50Z) - Minibatch vs Local SGD for Heterogeneous Distributed Learning [28.80878557506603]
We argue that Minibatch SGD dominates all existing analysis of Local SGD in this setting.
We present the first upper bound for Local SGD that improves over Minibatch SGD in a non-homogeneous regime.
arXiv Detail & Related papers (2020-06-08T16:40:49Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z) - Robust Federated Learning Through Representation Matching and Adaptive
Hyper-parameters [5.319361976450981]
Federated learning is a distributed, privacy-aware learning scenario which trains a single model on data belonging to several clients.
Current federated learning methods struggle in cases with heterogeneous client-side data distributions.
We propose a novel representation matching scheme that reduces the divergence of local models.
arXiv Detail & Related papers (2019-12-30T20:19:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.