論文の概要: GL-MCM: Global and Local Maximum Concept Matching for Zero-Shot Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2304.04521v4
- Date: Tue, 21 Jan 2025 17:01:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:29:53.765422
- Title: GL-MCM: Global and Local Maximum Concept Matching for Zero-Shot Out-of-Distribution Detection
- Title(参考訳): GL-MCM:Zero-Shot Out-of-Distribution Detectionのための大域的および局所的最大概念マッチング
- Authors: Atsuyuki Miyai, Qing Yu, Go Irie, Kiyoharu Aizawa,
- Abstract要約: GL-MCM(Global-Local Maximum Concept Matching)を提案する。
GL-MCMは、局所的な画像スコアを補助スコアとして組み込んで、グローバルな視覚的特徴と局所的な視覚的特徴の分離性を高める。
ImageNetとマルチオブジェクトベンチマークの実験は、GL-MCMがベースラインゼロショット法より優れていることを示した。
- 参考スコア(独自算出の注目度): 34.208197494036085
- License:
- Abstract: Zero-shot out-of-distribution (OOD) detection is a task that detects OOD images during inference with only in-distribution (ID) class names. Existing methods assume ID images contain a single, centered object, and do not consider the more realistic multi-object scenarios, where both ID and OOD objects are present. To meet the needs of many users, the detection method must have the flexibility to adapt the type of ID images. To this end, we present Global-Local Maximum Concept Matching (GL-MCM), which incorporates local image scores as an auxiliary score to enhance the separability of global and local visual features. Due to the simple ensemble score function design, GL-MCM can control the type of ID images with a single weight parameter. Experiments on ImageNet and multi-object benchmarks demonstrate that GL-MCM outperforms baseline zero-shot methods and is comparable to fully supervised methods. Furthermore, GL-MCM offers strong flexibility in adjusting the target type of ID images. The code is available via https://github.com/AtsuMiyai/GL-MCM.
- Abstract(参考訳): Zero-shot out-of-distribution (OOD) 検出は、in-distribution (ID)クラス名のみによる推論中にOODイメージを検出するタスクである。
既存の手法では、IDイメージには単一の中心オブジェクトが含まれており、IDオブジェクトとOODオブジェクトの両方が存在するような、より現実的なマルチオブジェクトシナリオを考慮していないと仮定している。
多くのユーザのニーズを満たすため、検出方法はID画像の種類に適応する柔軟性を持つ必要がある。
この目的のために,局所画像スコアをアセプションスコアとして組み込んだGL-MCM(Global-Local Maximum Concept Matching)を提案する。
単純なアンサンブルスコア関数の設計のため、GL-MCMは単一の重みパラメータでID画像の種類を制御できる。
ImageNetとマルチオブジェクトベンチマークの実験では、GL-MCMはベースラインゼロショット法よりも優れており、完全に教師された手法に匹敵する。
さらに、GL-MCMはターゲットのID画像の調整に強い柔軟性を提供する。
コードはhttps://github.com/AtsuMiyai/GL-MCMから入手できる。
関連論文リスト
- A Generative Approach for Wikipedia-Scale Visual Entity Recognition [56.55633052479446]
与えられたクエリ画像をWikipediaにある600万の既存エンティティの1つにマッピングするタスクに対処する。
本稿では,対象エンティティを識別する「意味的・識別的コード」の自動復号化を学習する,新しい生成エンティティ認識フレームワークを紹介する。
論文 参考訳(メタデータ) (2024-03-04T13:47:30Z) - CtxMIM: Context-Enhanced Masked Image Modeling for Remote Sensing Image Understanding [38.53988682814626]
リモートセンシング画像理解のためのコンテキスト強化マスク画像モデリング手法(CtxMIM)を提案する。
CtxMIMは、オリジナルのイメージパッチを再構成テンプレートとして定式化し、2セットのイメージパッチを操作するために、Siameseフレームワークを使用している。
シンプルでエレガントな設計により、CtxMIMは、大規模データセットでオブジェクトレベルまたはピクセルレベルの機能を学ぶための事前トレーニングモデルを奨励する。
論文 参考訳(メタデータ) (2023-09-28T18:04:43Z) - Beyond One-to-One: Rethinking the Referring Image Segmentation [117.53010476628029]
イメージセグメンテーションの参照は、自然言語表現によって参照される対象オブジェクトをセグメンテーションすることを目的としている。
2つのデコーダ分岐を含むDMMI(Dual Multi-Modal Interaction)ネットワークを提案する。
テキスト・ツー・イメージ・デコーダでは、テキストの埋め込みを利用して視覚的特徴を検索し、対応するターゲットをローカライズする。
一方、画像からテキストへのデコーダは、視覚的特徴に条件付けられた消去されたエンティティ・フレーズを再構成するために実装される。
論文 参考訳(メタデータ) (2023-08-26T11:39:22Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - Detector Guidance for Multi-Object Text-to-Image Generation [61.70018793720616]
Detector Guidance(DG)は、潜在オブジェクト検出モデルを統合して、生成プロセス中に異なるオブジェクトを分離する。
人間の評価は、DGが対立する概念の融合を防ぐのに8-22%の利点をもたらすことを示した。
論文 参考訳(メタデータ) (2023-06-04T02:33:12Z) - CLIP-ReID: Exploiting Vision-Language Model for Image Re-Identification
without Concrete Text Labels [28.42405456691034]
本稿では,画像再識別作業における視覚的表現の改善を目的とした2段階戦略を提案する。
鍵となるアイデアは、各IDの学習可能なテキストトークンセットを通じて、CLIPのクロスモーダル記述能力をフル活用することだ。
提案手法の有効性は、人や車両のReIDタスクのための複数のデータセット上で検証される。
論文 参考訳(メタデータ) (2022-11-25T09:41:57Z) - Tasks Integrated Networks: Joint Detection and Retrieval for Image
Search [99.49021025124405]
多くの現実世界の探索シナリオ(例えばビデオ監視)では、オブジェクトは正確に検出または注釈付けされることはめったにない。
まず、エンド・ツー・エンド統合ネット(I-Net)を紹介します。
さらに,2つの新しいコントリビューションを行うDC-I-Netという改良されたI-Netを提案する。
論文 参考訳(メタデータ) (2020-09-03T03:57:50Z) - A Fast Fully Octave Convolutional Neural Network for Document Image
Segmentation [1.8426817621478804]
ID画像中の文書のエッジやテキスト領域を検出するためのU-Netに基づく手法について検討する。
本研究では,オクタベ・コンボリューションに基づくモデル最適化手法を提案する。
その結果,提案手法はセグメンテーションタスクの文書化やポータブル化に有効であることがわかった。
論文 参考訳(メタデータ) (2020-04-03T00:57:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。